BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 35297316)

  • 1. Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater.
    Koul Y; Devda V; Varjani S; Guo W; Ngo HH; Taherzadeh MJ; Chang JS; Wong JWC; Bilal M; Kim SH; Bui XT; Parra-Saldívar R
    Bioengineered; 2022 Apr; 13(4):8115-8134. PubMed ID: 35297316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant.
    Guerrero-Sodric O; Baeza JA; Guisasola A
    Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies.
    Shoener BD; Bradley IM; Cusick RD; Guest JS
    Environ Sci Process Impacts; 2014 May; 16(6):1204-22. PubMed ID: 24671159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects.
    Katuri KP; Ali M; Saikaly PE
    Curr Opin Biotechnol; 2019 Jun; 57():101-110. PubMed ID: 30953903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode.
    Xu Y; Jiang Y; Chen Y; Zhu S; Shen S
    Water Environ Res; 2014 Jul; 86(7):649-53. PubMed ID: 25112032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of the performance of anaerobic membrane bioreactor with electrolytic regeneration (AMBER) for challenges and options in wastewater treatment.
    Amouamouha M; Gholikandi GB; Walker TW
    Sci Total Environ; 2022 Oct; 844():157080. PubMed ID: 35810911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells.
    Foley JM; Rozendal RA; Hertle CK; Lant PA; Rabaey K
    Environ Sci Technol; 2010 May; 44(9):3629-37. PubMed ID: 20356090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy shifting in wastewater treatment using compressed oxygen from integrated hydrogen production.
    Donald R; Love JG
    J Environ Manage; 2023 Apr; 331():117205. PubMed ID: 36638719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrochemical anaerobic sewage treatment technology for Arctic communities.
    Tartakovsky B; Kleiner Y; Manuel MF
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32844-32850. PubMed ID: 28105595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations.
    Maaz M; Yasin M; Aslam M; Kumar G; Atabani AE; Idrees M; Anjum F; Jamil F; Ahmad R; Khan AL; Lesage G; Heran M; Kim J
    Bioresour Technol; 2019 Jul; 283():358-372. PubMed ID: 30928198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives.
    Stazi V; Tomei MC
    Sci Total Environ; 2018 Sep; 635():78-91. PubMed ID: 29660730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biorefinery for heterogeneous organic waste using microbial electrochemical technology.
    Desmond-Le Quéméner E; Bridier A; Tian JH; Madigou C; Bureau C; Qi Y; Bouchez T
    Bioresour Technol; 2019 Nov; 292():121943. PubMed ID: 31421593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial electrolysis cells for waste biorefinery: A state of the art review.
    Lu L; Ren ZJ
    Bioresour Technol; 2016 Sep; 215():254-264. PubMed ID: 27020129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure.
    Huang J; Feng H; Huang L; Ying X; Shen D; Chen T; Shen X; Zhou Y; Xu Y
    Waste Manag; 2020 Feb; 103():61-66. PubMed ID: 31865036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of treatment performance and microbial community evolution of typical dye wastewater by different combined processes.
    Chen Z; Feng M; Wang Y; Ling X
    Ecotoxicol Environ Saf; 2024 Apr; 275():116226. PubMed ID: 38537479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic digestion of pulp and paper mill wastewater and sludge.
    Meyer T; Edwards EA
    Water Res; 2014 Nov; 65():321-49. PubMed ID: 25150519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.
    Escapa A; San-Martín MI; Mateos R; Morán A
    Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages.
    Gil-Carrera L; Escapa A; Carracedo B; Morán A; Gómez X
    Bioresour Technol; 2013 Oct; 146():63-69. PubMed ID: 23911817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell.
    Gil-Carrera L; Escapa A; Moreno R; Morán A
    J Environ Manage; 2013 Jun; 122():1-7. PubMed ID: 23524371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.