These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 35297326)

  • 1. Gaming experience predicts UAS operator performance and workload in simulated search and rescue missions.
    Ferraro JC; Mouloua M; Mangos PM; Matthews G
    Ergonomics; 2022 Dec; 65(12):1659-1671. PubMed ID: 35297326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vigilance and Automation Dependence in Operation of Multiple Unmanned Aerial Systems (UAS): A Simulation Study.
    Wohleber RW; Matthews G; Lin J; Szalma JL; Calhoun GL; Funke GJ; Chiu CP; Ruff HA
    Hum Factors; 2019 May; 61(3):488-505. PubMed ID: 30265579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operator selection for unmanned aerial systems: comparing video game players and pilots.
    McKinley RA; McIntire LK; Funke MA
    Aviat Space Environ Med; 2011 Jun; 82(6):635-42. PubMed ID: 21702315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue.
    Van Tilburg C
    Wilderness Environ Med; 2017 Jun; 28(2):116-118. PubMed ID: 28318989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overload and automation-dependence in a multi-UAS simulation: Task demand and individual difference factors.
    Lin J; Matthews G; Wohleber RW; Funke GJ; Calhoun GL; Ruff HA; Szalma J; Chiu P
    J Exp Psychol Appl; 2020 Jun; 26(2):218-235. PubMed ID: 31621357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cyber-Physical-Human System for One-to-Many UAS Operations: Cognitive Load Analysis.
    Planke LJ; Lim Y; Gardi A; Sabatini R; Kistan T; Ezer N
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mission control of multiple unmanned aerial vehicles: a workload analysis.
    Dixon SR; Wickens CD; Chang D
    Hum Factors; 2005; 47(3):479-87. PubMed ID: 16435690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting Human Performance in Remotely Piloted Aircraft.
    Gruenwald CM; Middendorf MS; Hoepf MR; Galster SM
    Aerosp Med Hum Perform; 2018 Feb; 89(2):115-121. PubMed ID: 29463356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving multi-tasking ability through action videogames.
    Chiappe D; Conger M; Liao J; Caldwell JL; Vu KP
    Appl Ergon; 2013 Mar; 44(2):278-84. PubMed ID: 22981314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating sociotechnical dynamics in a simulated remotely-piloted aircraft system: a layered dynamics approach.
    Gorman JC; Demir M; Cooke NJ; Grimm DA
    Ergonomics; 2019 May; 62(5):629-643. PubMed ID: 30526423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance.
    Wright JL; Chen JYC; Barnes MJ
    Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing operator capacity estimates for supervisory control of autonomous vehicles.
    Cummings ML; Guerlain S
    Hum Factors; 2007 Feb; 49(1):1-15. PubMed ID: 17315838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of human-automation consensus in multiple unmanned vehicle scheduling.
    Cummings ML; Clare A; Hart C
    Hum Factors; 2010 Feb; 52(1):17-27. PubMed ID: 20653222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D gaming environment preferences: Inversion of the Y-axis.
    Frischmann TB; Mouloua M; Procci K
    Ergonomics; 2015; 58(11):1792-9. PubMed ID: 25942526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance degrades less under increased workload with the addition of speech control in a dynamic environment.
    Vukovic M; Cavedon L; Thangarajah J; Rodriguez S
    Appl Ergon; 2021 Oct; 96():103486. PubMed ID: 34139375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influencing Trust for Human-Automation Collaborative Scheduling of Multiple Unmanned Vehicles.
    Clare AS; Cummings ML; Repenning NP
    Hum Factors; 2015 Nov; 57(7):1208-18. PubMed ID: 26060238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of three task demand factors on simulated unmanned system intelligence, surveillance, and reconnaissance operations.
    Abich J; Reinerman-Jones L; Matthews G
    Ergonomics; 2017 Jun; 60(6):791-809. PubMed ID: 27557433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of individual differences, prior experience and cognitive load on the transfer of dynamic decision-making performance.
    Nicholson B; O'Hare D
    Ergonomics; 2014; 57(9):1353-65. PubMed ID: 24994502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulated avalanche search and rescue mission induces temporary physiological and behavioural changes in military dogs.
    Diverio S; Barbato O; Cavallina R; Guelfi G; Iaboni M; Zasso R; Di Mari W; Santoro MM; Knowles TG
    Physiol Behav; 2016 Sep; 163():193-202. PubMed ID: 27174611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Ground Control System of Multiple-UAV Operators in a Simulated Environment.
    Lim HJ; Choi SH; Oh J; Kim BS; Kim S; Yang JH
    Aerosp Med Hum Perform; 2019 Oct; 90(10):841-850. PubMed ID: 31558192
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.