BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35297555)

  • 1. Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patient-induced pluripotent stem cell-derived retinal pigment epithelium cells.
    Georgiou M; Yang C; Atkinson R; Pan KT; Buskin A; Molina MM; Collin J; Al-Aama J; Goertler F; Ludwig SEJ; Davey T; Lührmann R; Nagaraja-Grellscheid S; Johnson CA; Ali R; Armstrong L; Korolchuk V; Urlaub H; Mozaffari-Jovin S; Lako M
    Clin Transl Med; 2022 Mar; 12(3):e759. PubMed ID: 35297555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa.
    Buskin A; Zhu L; Chichagova V; Basu B; Mozaffari-Jovin S; Dolan D; Droop A; Collin J; Bronstein R; Mehrotra S; Farkas M; Hilgen G; White K; Pan KT; Treumann A; Hallam D; Bialas K; Chung G; Mellough C; Ding Y; Krasnogor N; Przyborski S; Zwolinski S; Al-Aama J; Alharthi S; Xu Y; Wheway G; Szymanska K; McKibbin M; Inglehearn CF; Elliott DJ; Lindsay S; Ali RR; Steel DH; Armstrong L; Sernagor E; Urlaub H; Pierce E; Lührmann R; Grellscheid SN; Johnson CA; Lako M
    Nat Commun; 2018 Oct; 9(1):4234. PubMed ID: 30315276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins.
    Valdés-Sánchez L; Calado SM; de la Cerda B; Aramburu A; García-Delgado AB; Massalini S; Montero-Sánchez A; Bhatia V; Rodríguez-Bocanegra E; Diez-Lloret A; Rodríguez-Martínez D; Chakarova C; Bhattacharya SS; Díaz-Corrales FJ
    Mol Med; 2019 Dec; 26(1):1. PubMed ID: 31892304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue.
    Rodrigues A; Slembrouck-Brec A; Nanteau C; Terray A; Tymoshenko Y; Zagar Y; Reichman S; Xi Z; Sahel JA; Fouquet S; Orieux G; Nandrot EF; Byrne LC; Audo I; Roger JE; Goureau O
    NPJ Regen Med; 2022 Aug; 7(1):39. PubMed ID: 35974011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A c.544_618del75bp mutation in the splicing factor gene PRPF31 is involved in non-syndromic retinitis pigmentosa by reducing the level of mRNA expression.
    Yang D; Yao Q; Li Y; Xu Y; Wang J; Zhao H; Liu F; Zhang Z; Liu Y; Bie X; Wang Y; Xu L; Luan Y; Yang S; Yang G; He Y
    Ophthalmic Physiol Opt; 2020 May; 40(3):289-299. PubMed ID: 32031697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa.
    Mordes D; Yuan L; Xu L; Kawada M; Molday RS; Wu JY
    Neurobiol Dis; 2007 May; 26(2):291-300. PubMed ID: 17350276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration.
    Graziotto JJ; Farkas MH; Bujakowska K; Deramaudt BM; Zhang Q; Nandrot EF; Inglehearn CF; Bhattacharya SS; Pierce EA
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):190-8. PubMed ID: 20811066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene of the month:
    Rose AM; Luo R; Radia UK; Bhattacharya SS
    J Clin Pathol; 2017 Sep; 70(9):729-732. PubMed ID: 28663330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa.
    Martínez-Gimeno M; Gamundi MJ; Hernan I; Maseras M; Millá E; Ayuso C; García-Sandoval B; Beneyto M; Vilela C; Baiget M; Antiñolo G; Carballo M
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2171-7. PubMed ID: 12714658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa.
    Schmidt-Kastner R; Yamamoto H; Hamasaki D; Yamamoto H; Parel JM; Schmitz C; Dorey CK; Blanks JC; Preising MN
    Mol Vis; 2008 Jan; 14():125-35. PubMed ID: 18334927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation Analysis of Pre-mRNA Splicing Genes PRPF31, PRPF8, and SNRNP200 in Chinese Families with Autosomal Dominant Retinitis Pigmentosa.
    Wu Z; Zhong M; Li M; Huang H; Liao J; Lu A; Guo K; Ma N; Lin J; Duan J; Liu L; Xu F; Zhong Z; Chen J
    Curr Mol Med; 2018; 18(5):287-294. PubMed ID: 30360737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa.
    Tanackovic G; Ransijn A; Thibault P; Abou Elela S; Klinck R; Berson EL; Chabot B; Rivolta C
    Hum Mol Genet; 2011 Jun; 20(11):2116-30. PubMed ID: 21378395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal Pigment Epithelial Cells: The Unveiled Component in the Etiology of Prpf Splicing Factor-Associated Retinitis Pigmentosa.
    Hamieh A; Nandrot EF
    Adv Exp Med Biol; 2019; 1185():227-231. PubMed ID: 31884616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells.
    Yuan L; Kawada M; Havlioglu N; Tang H; Wu JY
    J Neurosci; 2005 Jan; 25(3):748-57. PubMed ID: 15659613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing.
    Makarova OV; Makarov EM; Liu S; Vornlocher HP; Lührmann R
    EMBO J; 2002 Mar; 21(5):1148-57. PubMed ID: 11867543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AAV-Mediated Gene Augmentation Therapy Restores Critical Functions in Mutant PRPF31
    Brydon EM; Bronstein R; Buskin A; Lako M; Pierce EA; Fernandez-Godino R
    Mol Ther Methods Clin Dev; 2019 Dec; 15():392-402. PubMed ID: 31890732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of Disease Penetrance in
    McLenachan S; Zhang D; Grainok J; Zhang X; Huang Z; Chen SC; Zaw K; Lima A; Jennings L; Roshandel D; Moon SY; Heath Jeffery RC; Attia MS; Thompson JA; Lamey TM; McLaren TL; De Roach J; Fletcher S; Chen FK
    Genes (Basel); 2021 Sep; 12(10):. PubMed ID: 34680937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Splicing Factor Mutations That Cause Retinitis Pigmentosa Result in Circadian Dysregulation.
    Shakhmantsir I; Dooley SJ; Kishore S; Chen D; Pierce E; Bennett J; Sehgal A
    J Biol Rhythms; 2020 Feb; 35(1):72-83. PubMed ID: 31726916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of gene-targeted mouse models of splicing factor gene Prpf31 implicated in human autosomal dominant retinitis pigmentosa (RP).
    Bujakowska K; Maubaret C; Chakarova CF; Tanimoto N; Beck SC; Fahl E; Humphries MM; Kenna PF; Makarov E; Makarova O; Paquet-Durand F; Ekström PA; van Veen T; Leveillard T; Humphries P; Seeliger MW; Bhattacharya SS
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5927-33. PubMed ID: 19578015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture.
    Azizzadeh Pormehr L; Ahmadian S; Daftarian N; Mousavi SA; Shafiezadeh M
    Eur J Hum Genet; 2020 Apr; 28(4):491-498. PubMed ID: 31654038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.