These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35297605)

  • 1. Diverse Protein Architectures and α-
    Imani AS; Lee AR; Vishwanathan N; de Waal F; Freeman MF
    ACS Chem Biol; 2022 Apr; 17(4):908-917. PubMed ID: 35297605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis.
    Miller FS; Crone KK; Jensen MR; Shaw S; Harcombe WR; Elias MH; Freeman MF
    Nat Commun; 2021 Sep; 12(1):5355. PubMed ID: 34504067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Borosin Catalytic Strategies and Function through Bioinformatic Profiling.
    Lee AR; Carter RS; Imani AS; Dommaraju SR; Hudson GA; Mitchell DA; Freeman MF
    ACS Chem Biol; 2024 May; 19(5):1116-1124. PubMed ID: 38695893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RiPP enzyme heterocomplex structure-guided discovery of a bacterial borosin α-
    Crone KK; Jomori T; Miller FS; Gralnick JA; Elias MH; Freeman MF
    RSC Chem Biol; 2023 Oct; 4(10):804-816. PubMed ID: 37799586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Autocatalytic α- N-Methylating Precursors Expand the Borosin RiPP Family of Peptide Natural Products.
    Quijano MR; Zach C; Miller FS; Lee AR; Imani AS; Künzler M; Freeman MF
    J Am Chem Soc; 2019 Jun; 141(24):9637-9644. PubMed ID: 31117659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic Expansion of Borosins Uncovers Trans-Acting Peptide Backbone
    Cho H; Lee H; Hong K; Chung H; Song I; Lee JS; Kim S
    Biochemistry; 2022 Feb; 61(3):183-194. PubMed ID: 35061348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computationally guided exploration of borosin biosynthetic strategies.
    Lee AR; Carter RS; Imani AS; Dommaraju SR; Hudson GA; Mitchell DA; Freeman MF
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin.
    Ozaki T; Minami A; Oikawa H
    J Antibiot (Tokyo); 2023 Jan; 76(1):3-13. PubMed ID: 36424516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era.
    Hetrick KJ; van der Donk WA
    Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-mediated backbone N-methylation in ribosomally encoded peptides.
    Matabaro E; Song H; Chepkirui C; Kaspar H; Witte L; Naismith JH; Freeman MF; Künzler M
    Methods Enzymol; 2021; 656():429-458. PubMed ID: 34325794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi.
    Ye Y; Minami A; Igarashi Y; Izumikawa M; Umemura M; Nagano N; Machida M; Kawahara T; Shin-Ya K; Gomi K; Oikawa H
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8072-5. PubMed ID: 27166860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochromes P450 involved in bacterial RiPP biosyntheses.
    Kunakom S; Otani H; Udwary DW; Doering DT; Mouncey NJ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36931895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides.
    Liu WQ; Ji X; Ba F; Zhang Y; Xu H; Huang S; Zheng X; Liu Y; Ling S; Jewett MC; Li J
    Nat Commun; 2024 May; 15(1):4336. PubMed ID: 38773100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi.
    Kessler SC; Chooi YH
    Nat Prod Rep; 2022 Feb; 39(2):222-230. PubMed ID: 34581394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.