These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35297639)

  • 1. Aprotic Solvent Exposes an Altered Mechanism for Copper-Catalyzed Ethylene Electrosynthesis.
    Chu AT; Surendranath Y
    J Am Chem Soc; 2022 Mar; 144(12):5359-5365. PubMed ID: 35297639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Non-Nucleophilic Electrolyte Resists Carbonation during Selective CO
    Chu AT; Jung O; Toh WL; Surendranath Y
    J Am Chem Soc; 2023 May; 145(17):9617-9623. PubMed ID: 37093640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyst Particle Density Controls Hydrocarbon Product Selectivity in CO
    Wang X; Varela AS; Bergmann A; Kühl S; Strasser P
    ChemSusChem; 2017 Nov; 10(22):4642-4649. PubMed ID: 28776946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Electrolyte Anions on the Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (100) and (111) Surfaces.
    Huang Y; Ong CW; Yeo BS
    ChemSusChem; 2018 Sep; 11(18):3299-3306. PubMed ID: 29943482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity.
    Wuttig A; Yaguchi M; Motobayashi K; Osawa M; Surendranath Y
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):E4585-93. PubMed ID: 27450088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of proton-coupled electron transfer in energy conversion processes.
    Hammes-Schiffer S
    Acc Chem Res; 2009 Dec; 42(12):1881-9. PubMed ID: 19807148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theories for Electrolyte Effects in CO
    Xu A; Govindarajan N; Kastlunger G; Vijay S; Chan K
    Acc Chem Res; 2022 Feb; 55(4):495-503. PubMed ID: 35107967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoting Ethylene Selectivity from CO
    Yang HJ; Yang H; Hong YH; Zhang PY; Wang T; Chen LN; Zhang FY; Wu QH; Tian N; Zhou ZY; Sun SG
    ChemSusChem; 2018 Mar; 11(5):881-887. PubMed ID: 29446547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Hydrogenation of CO on Cu(100): Insights from Accurate Multiconfigurational Wavefunction Methods.
    Zhao Q; Martirez JMP; Carter EA
    J Phys Chem Lett; 2022 Nov; 13(44):10282-10290. PubMed ID: 36305601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Insights into the Unique Role of Copper in CO
    Liu SP; Zhao M; Gao W; Jiang Q
    ChemSusChem; 2017 Jan; 10(2):387-393. PubMed ID: 27943655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper nanoparticle ensembles for selective electroreduction of CO
    Kim D; Kley CS; Li Y; Yang P
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10560-10565. PubMed ID: 28923930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic Applications of Proton-Coupled Electron Transfer.
    Gentry EC; Knowles RR
    Acc Chem Res; 2016 Aug; 49(8):1546-56. PubMed ID: 27472068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent and Temperature Probes of the Long-Range Electron-Transfer Step in Tyramine β-Monooxygenase: Demonstration of a Long-Range Proton-Coupled Electron-Transfer Mechanism.
    Zhu H; Sommerhalter M; Nguy AK; Klinman JP
    J Am Chem Soc; 2015 May; 137(17):5720-9. PubMed ID: 25919134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvothermally-Prepared Cu
    Larrazábal GO; Martín AJ; Krumeich F; Hauert R; Pérez-Ramírez J
    ChemSusChem; 2017 Mar; 10(6):1255-1265. PubMed ID: 27911498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO
    Bui JC; Kim C; King AJ; Romiluyi O; Kusoglu A; Weber AZ; Bell AT
    Acc Chem Res; 2022 Feb; 55(4):484-494. PubMed ID: 35104114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydronium-Induced Switching between CO
    Seifitokaldani A; Gabardo CM; Burdyny T; Dinh CT; Edwards JP; Kibria MG; Bushuyev OS; Kelley SO; Sinton D; Sargent EH
    J Am Chem Soc; 2018 Mar; 140(11):3833-3837. PubMed ID: 29504748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating Electrode Inactivation during CO
    Kash BC; Gomes RJ; Amanchukwu CV
    J Phys Chem Lett; 2023 Feb; 14(4):920-926. PubMed ID: 36669142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-Sensitive CO
    Li Y; Cui F; Ross MB; Kim D; Sun Y; Yang P
    Nano Lett; 2017 Feb; 17(2):1312-1317. PubMed ID: 28094953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron-Proton Transfer.
    Harshan AK; Yu T; Soudackov AV; Hammes-Schiffer S
    J Am Chem Soc; 2015 Oct; 137(42):13545-55. PubMed ID: 26412613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective CO
    Gao D; Sinev I; Scholten F; Arán-Ais RM; Divins NJ; Kvashnina K; Timoshenko J; Roldan Cuenya B
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):17047-17053. PubMed ID: 31476272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.