BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35297688)

  • 1. Mechanical unloading of 3D-engineered muscle leads to muscle atrophy by suppressing protein synthesis.
    Sugimoto T; Imai S; Yoshikawa M; Fujisato T; Hashimoto T; Nakamura T
    J Appl Physiol (1985); 2022 Apr; 132(4):1091-1103. PubMed ID: 35297688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
    Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA
    J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.
    Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth.
    Mirzoev TM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice.
    Zhang P; Li W; Liu H; Li J; Wang J; Li Y; Chen X; Yang Z; Fan M
    Cell Biochem Biophys; 2014 Nov; 70(2):1057-67. PubMed ID: 24839113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats.
    Baehr LM; West DWD; Marshall AG; Marcotte GR; Baar K; Bodine SC
    J Appl Physiol (1985); 2017 May; 122(5):1336-1350. PubMed ID: 28336537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Eukarion-134 on Akt-mTOR signalling in the rat soleus during 7 days of mechanical unloading.
    Kuczmarski JM; Hord JM; Lee Y; Guzzoni V; Rodriguez D; Lawler MS; Garcia-Villatoro EL; Holly D; Ryan P; Falcon K; Garcia M; Janini Gomes M; Fluckey JD; Lawler JM
    Exp Physiol; 2018 Apr; 103(4):545-558. PubMed ID: 29315934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitin targeting of rat muscle proteins during short periods of unloading.
    Vermaelen M; Marini JF; Chopard A; Benyamin Y; Mercier J; Astier C
    Acta Physiol Scand; 2005 Sep; 185(1):33-40. PubMed ID: 16128695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plantar mechanical stimulation prevents calcineurin-NFATc1 inactivation and slow-to-fast fiber type shift in rat soleus muscle under hindlimb unloading.
    Sharlo K; Paramonova I; Turtikova O; Tyganov S; Shenkman B
    J Appl Physiol (1985); 2019 Jun; 126(6):1769-1781. PubMed ID: 31046517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Supplementation Enhances the Effects of Intermittent Loading on Skeletal Muscles by Activating the mTORC1 Signaling Pathway in a Rat Model of Disuse Atrophy.
    Miyatake S; Hino K; Natsui Y; Ebisu G; Fujita S
    Nutrients; 2020 Sep; 12(9):. PubMed ID: 32906669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies.
    Deane CS; Piasecki M; Atherton PJ
    Clin Sci (Lond); 2024 Jun; 138(12):741-756. PubMed ID: 38895777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Celecoxib attenuates hindlimb unloading-induced muscle atrophy via suppressing inflammation, oxidative stress and ER stress by inhibiting STAT3.
    Ji Y; Lin J; Liu R; Wang K; Chang M; Gao Z; Liu B; Shen Y; Zhu J; Yao X; Qi L; Sun H
    Inflammopharmacology; 2024 Apr; 32(2):1633-1646. PubMed ID: 38451396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of skeletal muscle size and anabolism are reproducible with multiple periods of unloading/reloading.
    Shimkus KL; Shirazi-Fard Y; Wiggs MP; Ullah ST; Pohlenz C; Gatlin DM; Carroll CC; Hogan HA; Fluckey JD
    J Appl Physiol (1985); 2018 Nov; 125(5):1456-1467. PubMed ID: 30091665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The involvement of transient receptor potential canonical type 1 in skeletal muscle regrowth after unloading-induced atrophy.
    Xia L; Cheung KK; Yeung SS; Yeung EW
    J Physiol; 2016 Jun; 594(11):3111-26. PubMed ID: 26752511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Percutaneous electrical stimulation-induced muscle contraction prevents the decrease in ribosome RNA and ribosome protein during pelvic hindlimb suspension.
    Kotani T; Tamura Y; Kouzaki K; Kato H; Isemura M; Nakazato K
    J Appl Physiol (1985); 2022 Oct; 133(4):822-833. PubMed ID: 36007895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise Preconditioning Blunts Early Atrogenes Expression and Atrophy in Gastrocnemius Muscle of Hindlimb Unloaded Mice.
    Brocca L; Rossi M; Canepari M; Bottinelli R; Pellegrino MA
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle-specific inducible AMPKα1/α2 knockout mice develop muscle weakness, glycogen depletion, and fibrosis that persists during disuse atrophy.
    Petrocelli JJ; Liu J; Yee EM; Ferrara PJ; Bourrant PE; de Hart NMMP; Tatum SM; Holland WJ; Funai K; Drummond MJ
    Am J Physiol Endocrinol Metab; 2024 Jan; 326(1):E50-E60. PubMed ID: 38019084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological sex divergence in transcriptomic profiles during the onset of hindlimb unloading-induced atrophy.
    Tsitkanou S; Morena da Silva F; Cabrera AR; Schrems ER; Murach KA; Washington TA; Rosa-Caldwell ME; Greene NP
    Am J Physiol Cell Physiol; 2023 Nov; 325(5):C1276-C1293. PubMed ID: 37746697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global deletion of CCL2 has adverse impacts on recovery of skeletal muscle fiber size and function and is muscle specific.
    Ferrara PJ; Reidy PT; Petrocelli JJ; Yee EM; Fix DK; Mahmassani ZS; Montgomery JA; McKenzie AI; de Hart NMMP; Drummond MJ
    J Appl Physiol (1985); 2023 Apr; 134(4):923-932. PubMed ID: 36861669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.