These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35297825)

  • 1. Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry.
    Chen T; Sun L; Yu H; Qi L; Shang D; Xie Y
    Appl Opt; 2022 Mar; 61(7):D22-D29. PubMed ID: 35297825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy.
    Cheng X; Yang X; Zhu Z; Guo L; Li X; Lu Y; Zeng X
    Appl Opt; 2017 Nov; 56(33):9144-9149. PubMed ID: 29216082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Versatile Method for Quantitative Analysis of Total Iron Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy.
    Su P; Wu X; Li C; Yan C; An Y; Liu S
    Appl Spectrosc; 2023 Feb; 77(2):140-150. PubMed ID: 36348501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel hybrid feature selection strategy in quantitative analysis of laser-induced breakdown spectroscopy.
    Yan C; Liang J; Zhao M; Zhang X; Zhang T; Li H
    Anal Chim Acta; 2019 Nov; 1080():35-42. PubMed ID: 31409473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-stream mineral identification of tailing slurries of tungsten
    Wang Q; Li F; Jiang X; Wu S; Xu M
    Anal Methods; 2020 Jul; 12(25):3296-3307. PubMed ID: 32930194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy improvement on quantitative analysis of the total iron content in branded iron ores by laser-induced breakdown spectroscopy combined with the double back propagation artificial neural network.
    Su P; Liu S; Min H; An Y; Yan C; Li C
    Anal Methods; 2022 Jan; 14(4):427-437. PubMed ID: 35018928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate quantification of alkalinity of sintered ore by random forest model based on PCA and variable importance (PCA-VI-RF).
    Deng X; Yang G; Zhang H; Chen G
    Appl Opt; 2020 Mar; 59(7):2042-2049. PubMed ID: 32225725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Scikit and Keras Libraries for the Classification of Iron Ore Data Acquired by Laser-Induced Breakdown Spectroscopy (LIBS).
    Hao YYX; Zhang L; Ren L
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recursive multimodel partial least squares estimation of mineral flotation slurry contents using optical reflectance spectra.
    Haavisto O; Hyƶtyniemi H
    Anal Chim Acta; 2009 May; 642(1-2):102-9. PubMed ID: 19427464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel hybrid filter/wrapper method for feature selection in archaeological ceramics classification by laser-induced breakdown spectroscopy.
    Ruan F; Hou L; Zhang T; Li H
    Analyst; 2021 Feb; 146(3):1023-1031. PubMed ID: 33300506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy improvement of quantitative LIBS analysis of coal properties using a hybrid model based on a wavelet threshold de-noising and feature selection method.
    Lu P; Zhuo Z; Zhang W; Tang J; Tang H; Lu J
    Appl Opt; 2020 Aug; 59(22):6443-6451. PubMed ID: 32749341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.
    Burnett BJ; Lawrence NJ; Abourahma JN; Walker EB
    Appl Spectrosc; 2016 May; 70(5):826-8. PubMed ID: 27006021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy.
    Ayyalasomayajula KK; Dikshit V; Yueh FY; Singh JP; Smith LT
    Anal Bioanal Chem; 2011 Jul; 400(10):3315-22. PubMed ID: 21424178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis.
    Yaroshchyk P; Death DL; Spencer SJ
    Appl Spectrosc; 2010 Dec; 64(12):1335-41. PubMed ID: 21144150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects and Mechanisms of Grinding Media on the Flotation Behavior of Scheelite.
    Yao W; Li M; Zhang M; Cui R; Ning J; Shi J
    ACS Omega; 2020 Dec; 5(49):32076-32083. PubMed ID: 33344862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of laser-induced breakdown spectroscopy measurement using two slurry circulation systems.
    Oh SY; Miller T; Yueh FY; Singh JP
    Appl Opt; 2007 Jul; 46(19):4020-5. PubMed ID: 17571141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy improvement of single-sample calibration laser-induced breakdown spectroscopy with self-absorption correction.
    Deng F; Hu Z; Zhang D; Chen F; Niu X; Nie J; Zeng Q; Guo L
    Opt Express; 2022 Mar; 30(6):9256-9268. PubMed ID: 35299358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron ore identification method using reflectance spectrometer and a deep neural network framework.
    Xiao D; Le BT; Ha TTL
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119168. PubMed ID: 33229210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Experimental investigation of Pb in soil slurries by laser induced breakdown spectroscopy].
    Lu Y; Wu JL; Li Y; Guo JJ; Cheng K; Hou HM; Zheng RE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3121-5. PubMed ID: 20101999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Analysis of Iron and Silicon Concentrations in Iron Ore Concentrate Using Portable X-ray Fluorescence (XRF).
    Zhou S; Yuan Z; Cheng Q; Weindorf DC; Zhang Z; Yang J; Zhang X; Chen G; Xie S
    Appl Spectrosc; 2020 Jan; 74(1):55-62. PubMed ID: 31397585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.