BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35297843)

  • 1. Glucose sensor modeling based on Fano resonance excitation in titania nanotube photonic crystal coated by titanium nitride as a plasmonic material.
    Elsayed AM; Ahmed AM; Aly AH
    Appl Opt; 2022 Mar; 61(7):1668-1674. PubMed ID: 35297843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region.
    Ahmed AM; Mehaney A
    Sci Rep; 2019 May; 9(1):6973. PubMed ID: 31061422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka.
    Pathania P; Shishodia MS
    Plasmonics; 2021; 16(6):2117-2124. PubMed ID: 34131417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual core photonic crystal fiber based plasmonic refractive index sensor with ultra-wide detection range.
    Hussain N; Masuk MR; Hossain MF; Kouzani AZ
    Opt Express; 2023 Jul; 31(16):26910-26922. PubMed ID: 37710540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.
    Rifat AA; Mahdiraji GA; Chow DM; Shee YG; Ahmed R; Adikan FR
    Sensors (Basel); 2015 May; 15(5):11499-510. PubMed ID: 25996510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence.
    Han W; Reiter S; Schlipf J; Mai C; Spirito D; Jose J; Wenger C; Fischer IA
    Opt Express; 2023 May; 31(11):17389-17407. PubMed ID: 37381475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances.
    Farsinezhad S; Shanavas T; Mahdi N; Askar AM; Kar P; Sharma H; Shankar K
    Nanotechnology; 2018 Apr; 29(15):154006. PubMed ID: 29406316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.
    Zhang J; Hong Q; Zou J; He Y; Yuan X; Zhu Z; Qin S
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System.
    Yu S; Zhao T; Yu J; Pan D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode Sensitivity Exploration of Silica-Titania Waveguide for Refractive Index Sensing Applications.
    Butt MA; Kaźmierczak A; Tyszkiewicz C; Karasiński P; Piramidowicz R
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities.
    Li J; Chen J; Liu X; Tian H; Wang J; Cui J; Rohimah S
    Appl Opt; 2021 Jun; 60(18):5312-5319. PubMed ID: 34263768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A doped-polymer based porous silicon photonic crystal sensor for the detection of gamma-ray radiation.
    Sayed FA; Elsayed HA; Mehaney A; Eissa MF; Aly AH
    RSC Adv; 2023 Jan; 13(5):3123-3138. PubMed ID: 36756394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bimetallic-Coated, Low Propagation Loss, Photonic Crystal Fiber Based Plasmonic Refractive Index Sensor.
    Mahfuz MA; Hossain MA; Haque E; Hai NH; Namihira Y; Ahmed F
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31480622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical-fibre characteristics based on Fano resonances and sensor application in blood glucose detection.
    Zhu J; Yin J
    Opt Express; 2022 Jul; 30(15):26749-26760. PubMed ID: 36236861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Sensitivity 3D ZIF-8/PDA Photonic Crystal-Based Biosensor for Blood Component Recognition.
    Nankali M; Einalou Z; Asadnia M; Razmjou A
    ACS Appl Bio Mater; 2021 Feb; 4(2):1958-1968. PubMed ID: 35014465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing mechanism of an Au-TiO
    Yang H; Huang H; Liu X; Li Z; Li J; Zhang D; Chen Y; Liu J
    Appl Opt; 2023 Jun; 62(17):4431-4438. PubMed ID: 37707134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance biosensor based on hexagonal lattice dual-core photonic crystal fiber.
    Ahmed T; Paul AK; Anower MS; Razzak SMA
    Appl Opt; 2019 Nov; 58(31):8416-8422. PubMed ID: 31873324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure.
    Li Z; Wen K; Chen L; Lei L; Zhou J; Zhou D; Fang Y; Wu B
    Appl Opt; 2019 Jun; 58(18):4878-4883. PubMed ID: 31503812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Titanium Nitride Nanohole Arrays for Refractometric Sensing.
    Günaydın BN; Gülmez M; Torabfam M; Pehlivan ZS; Tütüncüoğlu A; Kayalan CI; Saatçioğlu E; Bayazıt MK; Yüce M; Kurt H
    ACS Appl Nano Mater; 2023 Nov; 6(22):20612-20622. PubMed ID: 38037604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.