These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35298175)

  • 21. Identification of hexokinase family members in pear (Pyrus × bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth.
    Zhao B; Qi K; Yi X; Chen G; Liu X; Qi X; Zhang S
    Gene; 2019 Aug; 711():143932. PubMed ID: 31202905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The peach HECATE3-like gene FLESHY plays a double role during fruit development.
    Botton A; Rasori A; Ziliotto F; Moing A; Maucourt M; Bernillon S; Deborde C; Petterle A; Varotto S; Bonghi C
    Plant Mol Biol; 2016 May; 91(1-2):97-114. PubMed ID: 26846510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage.
    Lombardo VA; Osorio S; Borsani J; Lauxmann MA; Bustamante CA; Budde CO; Andreo CS; Lara MV; Fernie AR; Drincovich MF
    Plant Physiol; 2011 Dec; 157(4):1696-710. PubMed ID: 22021422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.
    Jiao Y; Ma RJ; Shen ZJ; Yan J; Yu ML
    J Zhejiang Univ Sci B; 2014 Sep; 15(9):809-19. PubMed ID: 25183035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative "phenol-omics" and gene expression analyses in peach (Prunus persica) skin in response to different postharvest UV-B treatments.
    Santin M; Lucini L; Castagna A; Rocchetti G; Hauser MT; Ranieri A
    Plant Physiol Biochem; 2019 Feb; 135():511-519. PubMed ID: 30463801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative N-Glycomic and N-Glycoproteomic Profiling of Peach [
    Zhao X; Zeng L; Wang J; Shi Y; Zhang B; Liu Y; Pan Y; Li X
    J Proteome Res; 2023 Mar; 22(3):885-895. PubMed ID: 36725203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomic and Metabolic Analyses Reveal the Mechanism of Ethylene Production in Stony Hard Peach Fruit during Cold Storage.
    Wang Y; Deng L; Meng J; Niu L; Pan L; Lu Z; Cui G; Wang Z; Zeng W
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit.
    Huang D; Tian W; Feng J; Zhu S
    Plant Physiol Biochem; 2020 Jun; 151():60-68. PubMed ID: 32200191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological and Transcriptomic Analyses of the Effects of Exogenous Lauric Acid on Drought Resistance in Peach (
    Zhang B; Du H; Yang S; Wu X; Liu W; Guo J; Xiao Y; Peng F
    Plants (Basel); 2023 Mar; 12(7):. PubMed ID: 37050118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying sources of metabolomic diversity and reconfiguration in peach fruit: taking notes for quality fruit improvement.
    Drincovich MF
    FEBS Open Bio; 2021 Dec; 11(12):3211-3217. PubMed ID: 34176215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring sources of resistance to brown rot in an interspecific almond × peach population.
    Baró-Montel N; Eduardo I; Usall J; Casals C; Arús P; Teixidó N; Torres R
    J Sci Food Agric; 2019 Jun; 99(8):4105-4113. PubMed ID: 30784078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scrutinising the relationship between major physiological and compositional changes during 'Merrill O'Henry' peach growth with brown rot susceptibility.
    Baró-Montel N; Giné-Bordonaba J; Torres R; Vall-Llaura N; Teixidó N; Usall J
    Food Sci Technol Int; 2021 Jun; 27(4):366-379. PubMed ID: 32960656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethylene biosynthesis and response factors are differentially modulated during the interaction of peach petals with Monilinia laxa or Monilinia fructicola.
    Vall-Llaura N; Giné-Bordonaba J; Usall J; Larrigaudière C; Teixidó N; Torres R
    Plant Sci; 2020 Oct; 299():110599. PubMed ID: 32900437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Salicylic acid treatment mitigates chilling injury in peach fruit by regulation of sucrose metabolism and soluble sugar content.
    Zhao Y; Song C; Brummell DA; Qi S; Lin Q; Bi J; Duan Y
    Food Chem; 2021 Oct; 358():129867. PubMed ID: 33979685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of sodium nitroprusside treatment on shikimate and phenylpropanoid pathways of apple fruit.
    Ge Y; Chen Y; Li C; Zhao J; Wei M; Li X; Yang S; Mi Y
    Food Chem; 2019 Aug; 290():263-269. PubMed ID: 31000046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First Report of Brown Rot Caused by Monilinia fructicola on Various Stone and Pome Fruits in the Czech Republic.
    Duchoslavová J; Širučková I; Zapletalová E; Navrátil M; Šafářová D
    Plant Dis; 2007 Jul; 91(7):907. PubMed ID: 30780411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Refinement of Peach Cover Spray Programs for Management of Brown Rot at Harvest.
    Lalancette N; Blaus LL; Engel P
    Plant Dis; 2020 May; 104(5):1527-1533. PubMed ID: 32105573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PpMYB15 and PpMYBF1 Transcription Factors Are Involved in Regulating Flavonol Biosynthesis in Peach Fruit.
    Cao Y; Xie L; Ma Y; Ren C; Xing M; Fu Z; Wu X; Yin X; Xu C; Li X
    J Agric Food Chem; 2019 Jan; 67(2):644-652. PubMed ID: 30525549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced expression of a subunit gene of sucrose non-fermenting 1 related kinase, PpSnRK1βγ, confers flat fruit abortion in peach by regulating sugar and starch metabolism.
    Guo J; Cao K; Yao JL; Deng C; Li Y; Zhu G; Fang W; Chen C; Wang X; Wu J; Guo W; Wang L
    BMC Plant Biol; 2021 Feb; 21(1):88. PubMed ID: 33568056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon sufficiency boosts phenylpropanoid biosynthesis early in peach fruit development priming superior fruit quality.
    Anthony BM; Chaparro JM; Prenni JE; Minas IS
    Plant Physiol Biochem; 2023 Mar; 196():1019-1031. PubMed ID: 36898214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.