These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35298478)

  • 1. Large electromagnetic field enhancement in plasmonic nanoellipse for tunable spaser based applications.
    Jamil S; Farooq W; Ullah N; Daud Khan A; Khalil UK; Mosavi A
    PLoS One; 2022; 17(3):e0263630. PubMed ID: 35298478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite-Scattering Plasmonic Nanoprobes for Label-Free, Quantitative Biomolecular Sensing.
    Zhang C; Paria D; Semancik S; Barman I
    Small; 2019 Sep; 15(38):e1901165. PubMed ID: 31394029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance.
    Hao F; Sonnefraud Y; Van Dorpe P; Maier SA; Halas NJ; Nordlander P
    Nano Lett; 2008 Nov; 8(11):3983-8. PubMed ID: 18831572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime.
    Ghosh PK; Debu DT; French DA; Herzog JB
    PLoS One; 2017; 12(5):e0177463. PubMed ID: 28486554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.
    Tsai CY; Lin JW; Wu CY; Lin PT; Lu TW; Lee PT
    Nano Lett; 2012 Mar; 12(3):1648-54. PubMed ID: 22321005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow Porous Gold Nanoshells with Controlled Nanojunctions for Highly Tunable Plasmon Resonances and Intense Field Enhancements for Surface-Enhanced Raman Scattering.
    Jeong S; Kim MW; Jo YR; Kim NY; Kang D; Lee SY; Yim SY; Kim BJ; Kim JH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44458-44465. PubMed ID: 31718128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent control of plasmonic nanoantennas using optical eigenmodes.
    Kosmeier S; De Luca AC; Zolotovskaya S; Di Falco A; Dholakia K; Mazilu M
    Sci Rep; 2013; 3():1808. PubMed ID: 23657743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing.
    Thilsted AH; Pan JY; Wu K; Zór K; Rindzevicius T; Schmidt MS; Boisen A
    Small; 2016 Dec; 12(48):6745-6752. PubMed ID: 27709773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Spot Engineering in Hierarchical Plasmonic Nanostructures.
    Yang X; Su D; Yu X; Zeng P; Liang H; Zhang G; Song B; Jiang S
    Small; 2023 Jun; 19(22):e2205659. PubMed ID: 36905245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures.
    Fernandes J; Kang S
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34209155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements.
    Lee S; Lee SH; Paulson B; Lee JC; Kim JK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():203-208. PubMed ID: 29935391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanostructures for nano-scale bio-sensing.
    Chung T; Lee SY; Song EY; Chun H; Lee B
    Sensors (Basel); 2011; 11(11):10907-29. PubMed ID: 22346679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures.
    Byun KM; Jang SM; Kim SJ; Kim D
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1027-34. PubMed ID: 19340279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized surface plasmon resonance spectroscopy and sensing.
    Willets KA; Van Duyne RP
    Annu Rev Phys Chem; 2007; 58():267-97. PubMed ID: 17067281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.