These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3529852)

  • 1. Compartmentation of adenine nucleotides and phosphocreatine shuttle in cardiac cells: some new evidence.
    Saks VA; Kuznetsov AV; Huchua ZA; Kupriyanov VV
    Adv Exp Med Biol; 1986; 194():103-16. PubMed ID: 3529852
    [No Abstract]   [Full Text] [Related]  

  • 2. Compartmentation of high-energy phosphates in resting and beating heart cells.
    Arrio-Dupont M; De Nay D
    Biochim Biophys Acta; 1986 Sep; 851(2):249-56. PubMed ID: 3488761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative phosphorylation of creatine by respiring pig heart mitochondria in the absence of added adenine nucleotides.
    Kim IH; Lee HJ
    Biochem Int; 1987 Jan; 14(1):103-10. PubMed ID: 3566769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cause and consequences of dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space in respect to exchange of energy rich phosphates between cytosol and mitochondria.
    Gellerich FN; Kunz W
    Biomed Biochim Acta; 1987; 46(8-9):S545-8. PubMed ID: 3435511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the mitochondrial outer membrane and the binding of creatine kinase to the mitochondrial inner membrane on the compartmentation of adenine nucleotides in the intermembrane space of rat heart mitochondria.
    Gellerich FN; Khuchua ZA; Kuznetsov AV
    Biochim Biophys Acta; 1993 Jan; 1140(3):327-34. PubMed ID: 8417781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The creatine-creatine phosphate energy shuttle.
    Bessman SP; Carpenter CL
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract]   [Full Text] [Related]  

  • 7. [Regulation problems in the energy metabolism of the myocardium].
    Nägle S
    Klin Wochenschr; 1970 Sep; 48(18):1075-89. PubMed ID: 4931196
    [No Abstract]   [Full Text] [Related]  

  • 8. Alteration of the phosphocreatine energy shuttle components in diabetic rat heart.
    Savabi F; Kirsch A
    J Mol Cell Cardiol; 1991 Nov; 23(11):1323-33. PubMed ID: 1803023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine kinase of heart mitochondria. Control of oxidative phosphorylation by the extramitochondrial concentrations of creatine and phosphocreatine.
    Jacobus WE; Diffley DM
    J Biol Chem; 1986 Dec; 261(35):16579-83. PubMed ID: 3782135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of food restriction on the phosphocreatine energy shuttle components in rat heart.
    Kirsch A; Savabi F
    J Mol Cell Cardiol; 1992 Aug; 24(8):821-30. PubMed ID: 1433312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Decreased creatine phosphokinase activity in the myocardium during stress].
    Golubeva LIu; Meerson FZ
    Kardiologiia; 1986 May; 26(5):108-9. PubMed ID: 3735909
    [No Abstract]   [Full Text] [Related]  

  • 12. Adenine nucleotide and creatine phosphate pool in adult and old rat heart during immobilization stress.
    Davydov VV; Shvets VN
    Gerontology; 2002; 48(2):81-3. PubMed ID: 11867929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria.
    Aliev MK; Saks VA
    Biochim Biophys Acta; 1993 Jul; 1143(3):291-300. PubMed ID: 8329438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creatine kinase and protein kinase reactions of cardiac cell membranes.
    Saks VA; Kupriyanov VV; Preobrazhenskii AN; Jacobus WE
    J Mol Cell Cardiol; 1982 Sep; 14 Suppl 3():1-12. PubMed ID: 7143449
    [No Abstract]   [Full Text] [Related]  

  • 17. Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation.
    Kuznetsov AV; Khuchua ZA; Vassil'eva EV; Medved'eva NV; Saks VA
    Arch Biochem Biophys; 1989 Jan; 268(1):176-90. PubMed ID: 2912374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interactions between heart mitochondrial creatine kinase and oxidative phosphorylation].
    Lipskaia TIu; Templ VD; Belousova LV; Molokova EV
    Biokhimiia; 1980 Aug; 45(8):1347-51. PubMed ID: 7236785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlations between cardiac protein synthesis rates, intracellular pH and the concentrations of creatine metabolites.
    Sugden PH; Fuller SJ
    Biochem J; 1991 Jan; 273(Pt 2)(Pt 2):339-46. PubMed ID: 1991035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.