These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35298538)

  • 1. Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems.
    Thakur M; Breger JC; Susumu K; Oh E; Spangler JR; Medintz IL; Walper SA; Ellis GA
    PLoS One; 2022; 17(3):e0265274. PubMed ID: 35298538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensor-assisted engineering of a high-yield Pichia pastoris cell-free protein synthesis platform.
    Aw R; Polizzi KM
    Biotechnol Bioeng; 2019 Mar; 116(3):656-666. PubMed ID: 30552674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrofoam and oxygen headspace bioreactors improve cell-free therapeutic protein production yields through enhanced oxygen transport.
    Nelson JAD; Barnett RJ; Hunt JP; Foutz I; Welton M; Bundy BC
    Biotechnol Prog; 2021 Mar; 37(2):e3079. PubMed ID: 32920987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid RNase inhibitor production to enable low-cost, on-demand cell-free protein synthesis biosensor use in human body fluids.
    Soltani M; Hunt JP; Bundy BC
    Biotechnol Bioeng; 2021 Oct; 118(10):3973-3983. PubMed ID: 34185319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe.
    Gan R; Jewett MC
    Biotechnol J; 2014 May; 9(5):641-51. PubMed ID: 24677809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Just add small molecules" cell-free protein synthesis: Combining DNA template and cell extract preparation into a single fermentation.
    Smith SA; Lindgren CM; Ebbert LE; Free TJ; Nelson JAD; Simonson KM; Hunt JP; Bundy BC
    Biotechnol Prog; 2023; 39(3):e3332. PubMed ID: 36799109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens.
    Des Soye BJ; Davidson SR; Weinstock MT; Gibson DG; Jewett MC
    ACS Synth Biol; 2018 Sep; 7(9):2245-2255. PubMed ID: 30107122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation Related Factors Improve the Productivity of a
    Xu H; Liu WQ; Li J
    ACS Synth Biol; 2020 May; 9(5):1221-1224. PubMed ID: 32330385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis.
    Underwood KA; Swartz JR; Puglisi JD
    Biotechnol Bioeng; 2005 Aug; 91(4):425-35. PubMed ID: 15991235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcompartmentalized Cell-Free Protein Synthesis in Hydrogel μ-Channels.
    Benítez-Mateos AI; Zeballos N; Comino N; Moreno de Redrojo L; Randelovic T; López-Gallego F
    ACS Synth Biol; 2020 Nov; 9(11):2971-2978. PubMed ID: 33170665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Streptomyces-Based Cell-Free Protein Synthesis System for High-Level Protein Expression.
    Xu H; Liu WQ; Li J
    Methods Mol Biol; 2022; 2433():89-103. PubMed ID: 34985739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free protein synthesis using Chinese hamster ovary cells.
    Makrydaki E; Marshall O; Heide C; Buldum G; Kontoravdi C; Polizzi KM
    Methods Enzymol; 2021; 659():411-435. PubMed ID: 34752298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology.
    Levine MZ; Gregorio NE; Jewett MC; Watts KR; Oza JP
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress of cell-free protein synthesis system and its applications in pharmaceutical engineering - A review].
    Jia X; Deng Z; Liu T
    Wei Sheng Wu Xue Bao; 2016 Mar; 56(3):530-42. PubMed ID: 27382794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract.
    Dopp BJL; Tamiev DD; Reuel NF
    Biotechnol Adv; 2019; 37(1):246-258. PubMed ID: 30572024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.
    Hodgman CE; Jewett MC
    Biotechnol Bioeng; 2013 Oct; 110(10):2643-54. PubMed ID: 23832321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode.
    Georgi V; Georgi L; Blechert M; Bergmeister M; Zwanzig M; Wüstenhagen DA; Bier FF; Jung E; Kubick S
    Lab Chip; 2016 Jan; 16(2):269-81. PubMed ID: 26554896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study.
    Malik P; Thareja R; Singh J; Kakkar R
    J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing a
    Yang C; Yang M; Zhao W; Ding Y; Wang Y; Li J
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shell thickness effects on quantum dot brightness and energy transfer.
    Chern M; Nguyen TT; Mahler AH; Dennis AM
    Nanoscale; 2017 Nov; 9(42):16446-16458. PubMed ID: 29063928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.