BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35298589)

  • 1. A Bayesian method to cluster single-cell RNA sequencing data using copy number alterations.
    Milite S; Bergamin R; Patruno L; Calonaci N; Caravagna G
    Bioinformatics; 2022 Apr; 38(9):2512-2518. PubMed ID: 35298589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian method to infer copy number clones from single-cell RNA and ATAC sequencing.
    Patruno L; Milite S; Bergamin R; Calonaci N; D'Onofrio A; Anselmi F; Antoniotti M; Graudenzi A; Caravagna G
    PLoS Comput Biol; 2023 Nov; 19(11):e1011557. PubMed ID: 37917660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting copy number alterations in RNA-Seq using SuperFreq.
    Flensburg C; Oshlack A; Majewski IJ
    Bioinformatics; 2021 Nov; 37(22):4023-4032. PubMed ID: 34132781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SECEDO: SNV-based subclone detection using ultra-low coverage single-cell DNA sequencing.
    Rozhoňová H; Danciu D; Stark S; Rätsch G; Kahles A; Lehmann KV
    Bioinformatics; 2022 Sep; 38(18):4293-4300. PubMed ID: 35900151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DiNAMIC.Duo: detecting somatic DNA copy number differences without a normal reference.
    Walter V; Choi HY; Zhao X; Gao Y; Holt J; Hayes DN
    Bioinformatics; 2022 Sep; 38(18):4415-4417. PubMed ID: 35924981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BiTSC 2: Bayesian inference of tumor clonal tree by joint analysis of single-cell SNV and CNA data.
    Chen Z; Gong F; Wan L; Ma L
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35368055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer.
    Shen Y; Chu Q; Timko MP; Fan L
    Bioinformatics; 2021 Nov; 37(22):4115-4122. PubMed ID: 34048541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable factor models of single-cell RNA-seq via variational autoencoders.
    Svensson V; Gayoso A; Yosef N; Pachter L
    Bioinformatics; 2020 Jun; 36(11):3418-3421. PubMed ID: 32176273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MixClone: a mixture model for inferring tumor subclonal populations.
    Li Y; Xie X
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S1. PubMed ID: 25707430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CopyVAE: a variational autoencoder-based approach for copy number variation inference using single-cell transcriptomics.
    Kurt S; Chen M; Toosi H; Chen X; Engblom C; Mold J; Hartman J; Lagergren J
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38676578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNAsim: improved simulation of single-cell copy number profiles and DNA-seq data from tumors.
    Weiner S; Bansal MS
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37449891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
    BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M
    Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment.
    Fei T; Yu T
    Bioinformatics; 2020 May; 36(10):3115-3123. PubMed ID: 32053185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian framework to study tumor subclone-specific expression by combining bulk DNA and single-cell RNA sequencing data.
    Qiao Y; Huang X; Moos PJ; Ahmann JM; Pomicter AD; Deininger MW; Byrd JC; Woyach JA; Stephens DM; Marth GT
    Genome Res; 2024 Feb; 34(1):94-105. PubMed ID: 38195207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical discovery of large-scale and focal copy number alterations in low-coverage cancer genomes.
    Khalil AIS; Khyriem C; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Apr; 21(1):147. PubMed ID: 32299346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing tumor clonal lineage trees incorporating single-nucleotide variants, copy number alterations and structural variations.
    Fu X; Lei H; Tao Y; Schwartz R
    Bioinformatics; 2022 Jun; 38(Suppl 1):i125-i133. PubMed ID: 35758777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cracking the pattern of tumor evolution based on single-cell copy number alterations.
    Wang Y; Zhang M; Shi J; Zhu Y; Wang X; Zhang S; Wang F
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37791583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SCONCE: a method for profiling copy number alterations in cancer evolution using single-cell whole genome sequencing.
    Hui S; Nielsen R
    Bioinformatics; 2022 Mar; 38(7):1801-1808. PubMed ID: 35080614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.