These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35298629)

  • 1. Towards improved dynamic photosynthesis in C3 crops by utilizing natural genetic variation.
    Sakoda K; Adachi S; Yamori W; Tanaka Y
    J Exp Bot; 2022 May; 73(10):3109-3121. PubMed ID: 35298629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential?
    Faralli M; Lawson T
    Plant J; 2020 Feb; 101(3):518-528. PubMed ID: 31625637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural genetic variation in dynamic photosynthesis is correlated with stomatal anatomical traits in diverse tomato species across geographical habitats.
    Yoshiyama Y; Wakabayashi Y; Mercer KL; Kawabata S; Kobayashi T; Tabuchi T; Yamori W
    J Exp Bot; 2024 Apr; ():. PubMed ID: 38606772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural genetic variation in plant photosynthesis.
    Flood PJ; Harbinson J; Aarts MG
    Trends Plant Sci; 2011 Jun; 16(6):327-35. PubMed ID: 21435936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.
    Tomimatsu H; Tang Y
    J Plant Res; 2016 May; 129(3):365-77. PubMed ID: 27094437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid stomatal closure contributes to higher water use efficiency in major C4 compared to C3 Poaceae crops.
    Ozeki K; Miyazawa Y; Sugiura D
    Plant Physiol; 2022 May; 189(1):188-203. PubMed ID: 35134220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of stomatal morphology and distribution on photosynthetic gas exchange.
    Harrison EL; Arce Cubas L; Gray JE; Hepworth C
    Plant J; 2020 Feb; 101(4):768-779. PubMed ID: 31583771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drivers of Natural Variation in Water-Use Efficiency Under Fluctuating Light Are Promising Targets for Improvement in Sorghum.
    Pignon CP; Leakey ADB; Long SP; Kromdijk J
    Front Plant Sci; 2021; 12():627432. PubMed ID: 33597965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops.
    Wang Y; Chan KX; Long SP
    Plant J; 2021 Jul; 107(2):343-359. PubMed ID: 34087011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light.
    Long SP; Taylor SH; Burgess SJ; Carmo-Silva E; Lawson T; De Souza AP; Leonelli L; Wang Y
    Annu Rev Plant Biol; 2022 May; 73():617-648. PubMed ID: 35595290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought stress reduces crop carbon gain due to delayed photosynthetic induction under fluctuating light conditions.
    Sakoda K; Taniyoshi K; Yamori W; Tanaka Y
    Physiol Plant; 2022 Jan; 174(1):e13603. PubMed ID: 34807462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetics as a key to improving crop photosynthesis.
    Theeuwen TPJM; Logie LL; Harbinson J; Aarts MGM
    J Exp Bot; 2022 May; 73(10):3122-3137. PubMed ID: 35235648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C
    Lundgren MR
    New Phytol; 2020 Dec; 228(6):1734-1740. PubMed ID: 32080851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Impacts of Fluctuating Light on Crop Performance.
    Slattery RA; Walker BJ; Weber APM; Ort DR
    Plant Physiol; 2018 Feb; 176(2):990-1003. PubMed ID: 29192028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity.
    Iñiguez C; Aguiló-Nicolau P; Galmés J
    Biochem Soc Trans; 2021 Nov; 49(5):2007-2019. PubMed ID: 34623388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. During photosynthetic induction, biochemical and stomatal limitations differ between Brassica crops.
    Taylor SH; Orr DJ; Carmo-Silva E; Long SP
    Plant Cell Environ; 2020 Nov; 43(11):2623-2636. PubMed ID: 32740963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives.
    Sharwood RE; Quick WP; Sargent D; Estavillo GM; Silva-Perez V; Furbank RT
    J Exp Bot; 2022 May; 73(10):3085-3108. PubMed ID: 35274686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis.
    Lawson T; Kramer DM; Raines CA
    Curr Opin Biotechnol; 2012 Apr; 23(2):215-20. PubMed ID: 22296828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency.
    van Bezouw RFHM; Keurentjes JJB; Harbinson J; Aarts MGM
    Plant J; 2019 Jan; 97(1):112-133. PubMed ID: 30548574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.