These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
550 related articles for article (PubMed ID: 35298806)
1. Machine Learning Prediction of Antimicrobial Peptides. Wang G; Vaisman II; van Hoek ML Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806 [TBL] [Abstract][Full Text] [Related]
2. APD3: the antimicrobial peptide database as a tool for research and education. Wang G; Li X; Wang Z Nucleic Acids Res; 2016 Jan; 44(D1):D1087-93. PubMed ID: 26602694 [TBL] [Abstract][Full Text] [Related]
3. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types. Xiao X; Shao YT; Cheng X; Stamatovic B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856 [TBL] [Abstract][Full Text] [Related]
4. The antimicrobial peptide database is 20 years old: Recent developments and future directions. Wang G Protein Sci; 2023 Oct; 32(10):e4778. PubMed ID: 37695921 [TBL] [Abstract][Full Text] [Related]
5. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Xiao X; Wang P; Lin WZ; Jia JH; Chou KC Anal Biochem; 2013 May; 436(2):168-77. PubMed ID: 23395824 [TBL] [Abstract][Full Text] [Related]
6. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides. Gull S; Shamim N; Minhas F Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Song J; Liu K; Jin X; Huang K; Fu S; Yi W; Cai Y; Yu Z; Mao F; Zhang Y Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330266 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides. Yin K; Xu W; Ren S; Xu Q; Zhang S; Zhang R; Jiang M; Zhang Y; Xu D; Li R Interdiscip Sci; 2024 Jun; 16(2):392-403. PubMed ID: 38416364 [TBL] [Abstract][Full Text] [Related]
9. Discovery of antimicrobial peptides in the global microbiome with machine learning. Santos-Júnior CD; Torres MDT; Duan Y; Rodríguez Del Río Á; Schmidt TSB; Chong H; Fullam A; Kuhn M; Zhu C; Houseman A; Somborski J; Vines A; Zhao XM; Bork P; Huerta-Cepas J; de la Fuente-Nunez C; Coelho LP Cell; 2024 Jul; 187(14):3761-3778.e16. PubMed ID: 38843834 [TBL] [Abstract][Full Text] [Related]
10. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537 [TBL] [Abstract][Full Text] [Related]
11. AMP-RNNpro: a two-stage approach for identification of antimicrobials using probabilistic features. Shaon MSH; Karim T; Sultan MF; Ali MM; Ahmed K; Hasan MZ; Moustafa A; Bui FM; Al-Zahrani FA Sci Rep; 2024 Jun; 14(1):12892. PubMed ID: 38839785 [TBL] [Abstract][Full Text] [Related]
12. Machine learning and molecular simulation ascertain antimicrobial peptide against Klebsiella pneumoniae from public database. Al-Khdhairawi A; Sanuri D; Akbar R; Lam SD; Sugumar S; Ibrahim N; Chieng S; Sairi F Comput Biol Chem; 2023 Feb; 102():107800. PubMed ID: 36516617 [TBL] [Abstract][Full Text] [Related]
13. Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment. Porto WF; Ferreira KCV; Ribeiro SM; Franco OL Biochim Biophys Acta Gen Subj; 2022 Mar; 1866(3):130070. PubMed ID: 34953809 [TBL] [Abstract][Full Text] [Related]
14. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Lefin N; Herrera-Belén L; Farias JG; Beltrán JF Mol Divers; 2024 Aug; 28(4):2365-2374. PubMed ID: 37626205 [TBL] [Abstract][Full Text] [Related]
15. Improved methods for classification, prediction, and design of antimicrobial peptides. Wang G Methods Mol Biol; 2015; 1268():43-66. PubMed ID: 25555720 [TBL] [Abstract][Full Text] [Related]
16. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery. Wu Q; Ke H; Li D; Wang Q; Fang J; Zhou J Curr Top Med Chem; 2019; 19(1):4-16. PubMed ID: 30674262 [TBL] [Abstract][Full Text] [Related]
17. Alignment-Free Antimicrobial Peptide Predictors: Improving Performance by a Thorough Analysis of the Largest Available Data Set. Pinacho-Castellanos SA; García-Jacas CR; Gilson MK; Brizuela CA J Chem Inf Model; 2021 Jun; 61(6):3141-3157. PubMed ID: 34081438 [TBL] [Abstract][Full Text] [Related]
18. PTPAMP: prediction tool for plant-derived antimicrobial peptides. Jaiswal M; Singh A; Kumar S Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258 [TBL] [Abstract][Full Text] [Related]
19. Establishing Quantifiable Guidelines for Antimicrobial α/β-Peptide Design: A Partial Least-Squares Approach to Improve Antimicrobial Activity and Reduce Mammalian Cell Toxicity. Chang DH; Lee MR; Wang N; Lynn DM; Palecek SP ACS Infect Dis; 2023 Dec; 9(12):2632-2651. PubMed ID: 38014670 [TBL] [Abstract][Full Text] [Related]
20. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms. Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]