BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35298815)

  • 1. Computational and Experimental Protocols to Study Cyclo-dihistidine Self- and Co-assembly: Minimalistic Bio-assemblies with Enhanced Fluorescence and Drug Encapsulation Properties.
    Orr AA; Chen Y; Gazit E; Tamamis P
    Methods Mol Biol; 2022; 2405():179-203. PubMed ID: 35298815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Assembly of Cancer Drugs with Cyclo-HH Peptides: Insights from Simulations and Experiments.
    Vlachou A; Kumar VB; Tiwari OS; Rencus-Lazar S; Chen Y; Ozguney B; Gazit E; Tamamis P
    ACS Appl Bio Mater; 2024 Apr; 7(4):2309-2324. PubMed ID: 38478987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials.
    Williams-Noonan BJ; Kulkarni K; Todorova N; Franceschi M; Wilde C; Borgo MPD; Serpell LC; Aguilar MI; Yarovsky I
    Adv Mater; 2024 Jun; 36(24):e2311103. PubMed ID: 38489817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide synthesis and self-assembly.
    Maude S; Tai LR; Davies RP; Liu B; Harris SA; Kocienski PJ; Aggeli A
    Top Curr Chem; 2012; 310():27-69. PubMed ID: 22025061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Spectroscopic Properties of Assemblies of Self-Replicating Peptide Macrocycles.
    Frederix PWJM; Idé J; Altay Y; Schaeffer G; Surin M; Beljonne D; Bondarenko AS; Jansen TLC; Otto S; Marrink SJ
    ACS Nano; 2017 Aug; 11(8):7858-7868. PubMed ID: 28723067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally designed peptides for self-assembly of nanostructured lattices.
    Zhang HV; Polzer F; Haider MJ; Tian Y; Villegas JA; Kiick KL; Pochan DJ; Saven JG
    Sci Adv; 2016 Sep; 2(9):e1600307. PubMed ID: 27626071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive molecular sheets from self-assembly of polymerizable peptides.
    Moon KS; Lee E; Lim YB; Lee M
    Chem Commun (Camb); 2008 Sep; (34):4001-3. PubMed ID: 18758606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum-Ion-Mediated Self-Assembly of Hairpin Peptides and Synthesis of Platinum Nanostructures.
    Wang J; Zhang L; Yang J; Yan H; Li X; Wang C; Wang D; Sun Y; Xu H
    Langmuir; 2019 Apr; 35(16):5617-5625. PubMed ID: 30942585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Ionic Self-Assembly of Polyoxometalates and Facial-Like Peptides.
    Li J; Li X; Xu J; Wang Y; Wu L; Wang Y; Wang L; Lee M; Li W
    Chemistry; 2016 Oct; 22(44):15751-15759. PubMed ID: 27621229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and self-assembly of a leucine-enkephalin analogue in different nanostructures: application of nanovesicles.
    Koley P; Gayen A; Drew MG; Mukhopadhyay C; Pramanik A
    Small; 2012 Apr; 8(7):984-90. PubMed ID: 22323423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational de novo design of a self-assembling peptide with predefined structure.
    Kaltofen S; Li C; Huang PS; Serpell LC; Barth A; André I
    J Mol Biol; 2015 Jan; 427(2):550-62. PubMed ID: 25498388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of an aspartate-rich sequence from the adenovirus fiber shaft: insights from molecular dynamics simulations and experiments.
    Tamamis P; Terzaki K; Kassinopoulos M; Mastrogiannis L; Mossou E; Forsyth VT; Mitchell EP; Mitraki A; Archontis G
    J Phys Chem B; 2014 Feb; 118(7):1765-74. PubMed ID: 24437637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity.
    Kornmueller K; Lehofer B; Meindl C; Fröhlich E; Leitinger G; Amenitsch H; Prassl R
    Biomacromolecules; 2016 Nov; 17(11):3591-3601. PubMed ID: 27741400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks.
    Kobayashi N; Inano K; Sasahara K; Sato T; Miyazawa K; Fukuma T; Hecht MH; Song C; Murata K; Arai R
    ACS Synth Biol; 2018 May; 7(5):1381-1394. PubMed ID: 29690759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of azide containing dipeptides.
    Yuran S; Razvag Y; Das P; Reches M
    J Pept Sci; 2014 Jul; 20(7):479-86. PubMed ID: 24889029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHARMM force field parameterization protocol for self-assembling peptide amphiphiles: the Fmoc moiety.
    Ramos Sasselli I; Ulijn RV; Tuttle T
    Phys Chem Chem Phys; 2016 Feb; 18(6):4659-67. PubMed ID: 26794129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.