BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 35299039)

  • 1. Numerical investigation of the energy distribution of Low-intensity transcranial focused ultrasound neuromodulation for hippocampus.
    Huang Y; Wen P; Song B; Li Y
    Ultrasonics; 2022 Aug; 124():106724. PubMed ID: 35299039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation.
    Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X
    Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation.
    Pasquinelli C; Montanaro H; Lee HJ; Hanson LG; Kim H; Kuster N; Siebner HR; Neufeld E; Thielscher A
    J Neural Eng; 2020 Jul; 17(4):046010. PubMed ID: 32485690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study.
    Truong DQ; Thomas C; Hampstead BM; Datta A
    Neuromodulation; 2022 Jun; 25(4):606-613. PubMed ID: 35125300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps.
    Robertson J; Martin E; Cox B; Treeby BE
    Phys Med Biol; 2017 Apr; 62(7):2559-2580. PubMed ID: 28165334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Optimized Miniaturized Ultrasound Transducer for Transcranial Neuromodulation.
    Hou C; Wu Y; Fei C; Qiu Z; Li Z; Sun X; Zheng C; Yang Y
    Front Neurosci; 2022; 16():893108. PubMed ID: 35801172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2016 Oct; 13(5):056002. PubMed ID: 27464603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic radiation force for analyzing the mechanical stress in ultrasound neuromodulation.
    Kim YH; Lee CH; Firouzi K; Park BH; Pyun JY; Kim JN; Park KK; Khuri-Yakub BT
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37366067
    [No Abstract]   [Full Text] [Related]  

  • 11. A novel numerical approach to stimulation of a specific brain region using transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3697-3700. PubMed ID: 30441175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterned Interference Radiation Force for Transcranial Neuromodulation.
    Kim YH; Kang KC; Kim JN; Pai CN; Zhang Y; Ghanouni P; Park KK; Firouzi K; Khuri-Yakub BT
    Ultrasound Med Biol; 2022 Mar; 48(3):497-511. PubMed ID: 34955292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential evolution method to find optimal location of a single-element transducer for transcranial focused ultrasound therapy.
    Park TY; Kim HJ; Park SH; Chang WS; Kim H; Yoon K
    Comput Methods Programs Biomed; 2022 Jun; 219():106777. PubMed ID: 35397411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Investigation of Layered Homogeneous Skull Model for Simulations of Transcranial Focused Ultrasound.
    Seo H; Han M; Choi JR; Kim S; Park J; Lee EH
    Neuromodulation; 2024 Apr; ():. PubMed ID: 38691075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Evaluation of the Effects of Transducer Displacement on Transcranial Focused Ultrasound in the Rat Brain.
    Seo H; Huh H; Lee EH; Park J
    Brain Sci; 2022 Feb; 12(2):. PubMed ID: 35203979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of CT image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations.
    Montanaro H; Pasquinelli C; Lee HJ; Kim H; Siebner HR; Kuster N; Thielscher A; Neufeld E
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33836508
    [No Abstract]   [Full Text] [Related]  

  • 18. Patch Clamp Technology for Focused Ultrasonic (FUS) Neuromodulation.
    Kim ES; Chang SY
    Methods Mol Biol; 2022; 2393():657-670. PubMed ID: 34837205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global sonication of the human intracranial space via a jumbo planar transducer.
    Brinker ST; Yoon K; Benveniste H
    Ultrasonics; 2023 Sep; 134():107062. PubMed ID: 37343366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual Brain Projection for Evaluating Trans-skull Beam Behavior of Transcranial Ultrasound Devices.
    Brinker ST; Preiswerk F; McDannold NJ; Parker KL; Mariano TY
    Ultrasound Med Biol; 2019 Jul; 45(7):1850-1856. PubMed ID: 31060860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.