These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35299145)
1. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature. Xu D; Tong S; Wang B; Zhang X; Wang W; Zhang X; Fan X; Wang Y; Sun K; Ye N Mar Pollut Bull; 2022 Apr; 177():113510. PubMed ID: 35299145 [TBL] [Abstract][Full Text] [Related]
2. Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum. Tong S; Xu D; Wang Y; Zhang X; Li Y; Wu H; Ye N Mar Environ Res; 2021 Feb; 164():105233. PubMed ID: 33310685 [TBL] [Abstract][Full Text] [Related]
3. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Zhong J; Guo Y; Liang Z; Huang Q; Lu H; Pan J; Li P; Jin P; Xia J Sci Total Environ; 2021 Jun; 771():145167. PubMed ID: 33736151 [TBL] [Abstract][Full Text] [Related]
4. Carbon assimilation and losses during an ocean acidification mesocosm experiment, with special reference to algal blooms. Liu N; Tong S; Yi X; Li Y; Li Z; Miao H; Wang T; Li F; Yan D; Huang R; Wu Y; Hutchins DA; Beardall J; Dai M; Gao K Mar Environ Res; 2017 Aug; 129():229-235. PubMed ID: 28641894 [TBL] [Abstract][Full Text] [Related]
5. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges. Yuan W; Gao G; Shi Q; Xu Z; Wu H Mar Environ Res; 2018 Apr; 135():63-69. PubMed ID: 29397992 [TBL] [Abstract][Full Text] [Related]
6. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO Shi D; Hong H; Su X; Liao L; Chang S; Lin W J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184 [TBL] [Abstract][Full Text] [Related]
7. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO Li F; Beardall J; Collins S; Gao K Glob Chang Biol; 2017 Jan; 23(1):127-137. PubMed ID: 27629864 [TBL] [Abstract][Full Text] [Related]
8. Ocean acidification interacts with growth light to suppress CO Qu L; Campbell DA; Gao K Mar Pollut Bull; 2021 Feb; 163():112008. PubMed ID: 33461076 [TBL] [Abstract][Full Text] [Related]
9. Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO Huang A; Wu S; Gu W; Li Y; Xie X; Wang G BMC Biotechnol; 2019 Jul; 19(1):53. PubMed ID: 31349823 [TBL] [Abstract][Full Text] [Related]
10. Effect of ocean acidification on iron availability to marine phytoplankton. Shi D; Xu Y; Hopkinson BM; Morel FM Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213 [TBL] [Abstract][Full Text] [Related]
11. Universal response pattern of phytoplankton growth rates to increasing CO Paul AJ; Bach LT New Phytol; 2020 Dec; 228(6):1710-1716. PubMed ID: 32654139 [TBL] [Abstract][Full Text] [Related]
12. Light-modulated responses of growth and photosynthetic performance to ocean acidification in the model diatom Phaeodactylum tricornutum. Li Y; Xu J; Gao K PLoS One; 2014; 9(5):e96173. PubMed ID: 24828454 [TBL] [Abstract][Full Text] [Related]
13. Photophysiological responses of the marine macroalga Gracilariopsis lemaneiformis to ocean acidification and warming. Yang Y; Li W; Li Y; Xu N Mar Environ Res; 2021 Jan; 163():105204. PubMed ID: 33213860 [TBL] [Abstract][Full Text] [Related]
14. Warming and Ocean Acidification Effects on Phytoplankton--From Species Shifts to Size Shifts within Species in a Mesocosm Experiment. Sommer U; Paul C; Moustaka-Gouni M PLoS One; 2015; 10(5):e0125239. PubMed ID: 25993440 [TBL] [Abstract][Full Text] [Related]
15. Boosted nutritional quality of food by CO Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888 [TBL] [Abstract][Full Text] [Related]
16. Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. Li W; Gao K; Beardall J PLoS One; 2012; 7(12):e51590. PubMed ID: 23236517 [TBL] [Abstract][Full Text] [Related]
17. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming. Kang EJ; Han AR; Kim JH; Kim IN; Lee S; Min JO; Nam BR; Choi YJ; Edwards MS; Diaz-Pulido G; Kim C Sci Total Environ; 2021 May; 769():144443. PubMed ID: 33493906 [TBL] [Abstract][Full Text] [Related]
18. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom. Li W; Wang T; Campbell DA; Gao K Mar Environ Res; 2020 Sep; 160():104965. PubMed ID: 32291249 [TBL] [Abstract][Full Text] [Related]
19. Simulated ocean acidification altered community composition and growth of a coastal phytoplankton assemblage (South West coast of India, eastern Arabian Sea). Sharma D; Biswas H; Bandyopadhyay D Environ Sci Pollut Res Int; 2022 Mar; 29(13):19244-19261. PubMed ID: 34714479 [TBL] [Abstract][Full Text] [Related]
20. The dinoflagellate Akashiwo sanguinea will benefit from future climate change: The interactive effects of ocean acidification, warming and high irradiance on photophysiology and hemolytic activity. Ou G; Wang H; Si R; Guan W Harmful Algae; 2017 Sep; 68():118-127. PubMed ID: 28962974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]