These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35299165)
1. Ag metal interconnect wires formed by pseudoplastic nanoparticles fluid imprinting lithography with microwave assistant sintering. Liu B; Yu Y; Hu Z; Li M; Ma L; Sun H; Jia J; Jiang C; Zhong Y; Chen Y; Duan Z Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35299165 [TBL] [Abstract][Full Text] [Related]
2. Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper. Jung S; Chun SJ; Shon CH ACS Appl Mater Interfaces; 2016 Aug; 8(31):20301-8. PubMed ID: 27441952 [TBL] [Abstract][Full Text] [Related]
3. High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste. Shen X; Li J; Xi S Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234479 [TBL] [Abstract][Full Text] [Related]
4. Sub-second carbon-nanotube-mediated microwave sintering for high-conductivity silver patterns on plastic substrates. Jung S; Chun SJ; Han JT; Woo JS; Shon CH; Lee GW Nanoscale; 2016 Mar; 8(9):5343-9. PubMed ID: 26883838 [TBL] [Abstract][Full Text] [Related]
5. Microstructures and Properties of Cu-rGO Composites Prepared by Microwave Sintering. Chen X; Zhao L; Jiang L; Wang H Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500989 [TBL] [Abstract][Full Text] [Related]
6. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity. Chung WH; Hwang YT; Lee SH; Kim HS Nanotechnology; 2016 May; 27(20):205704. PubMed ID: 27070756 [TBL] [Abstract][Full Text] [Related]
8. Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates. Zacharatos F; Theodorakos I; Karvounis P; Tuohy S; Braz N; Melamed S; Kabla A; de la Vega F; Andritsos K; Hatziapostolou A; Karnakis D; Zergioti I Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30384412 [TBL] [Abstract][Full Text] [Related]
9. Study on preparation and sintering properties of nano-silver-coated tin slurry. Yang H; You H R Soc Open Sci; 2023 Jun; 10(6):221492. PubMed ID: 37293359 [TBL] [Abstract][Full Text] [Related]
10. Twin-Wire Networks for Zero Interconnect, High-Density 4-Wire Electrical Characterizations of Materials. Montoya NA; Criscuolo V; Lo Presti A; Vecchione R; Falconi C Research (Wash D C); 2022; 2022():9874249. PubMed ID: 35098140 [TBL] [Abstract][Full Text] [Related]
11. Microwave Sintering of Silver Nanoink for Radio Frequency Applications. Kim KS; Park BG; Jung KH; Kim JW; Jeong MY; Jung SB J Nanosci Nanotechnol; 2015 Mar; 15(3):2333-7. PubMed ID: 26413662 [TBL] [Abstract][Full Text] [Related]
12. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging. Ji H; Zhou J; Liang M; Lu H; Li M Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764 [TBL] [Abstract][Full Text] [Related]
13. Residual Stress and Warping Analysis of the Nano-Silver Pressureless Sintering Process in SiC Power Device Packaging. Tian W; Li D; Dang H; Liang S; Zhang Y; Zhang X; Chen S; Yu X Micromachines (Basel); 2024 Aug; 15(9):. PubMed ID: 39337746 [TBL] [Abstract][Full Text] [Related]
14. Discussion on Local Spark Sintering of a Ceramic-Metal System in an SR-CT Experiment during Microwave Processing. Li Y; Xu F; Hu X; Dong B; Luan Y; Xiao Y Materials (Basel); 2016 Feb; 9(3):. PubMed ID: 28773258 [TBL] [Abstract][Full Text] [Related]
16. Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Perelaer J; Jani R; Grouchko M; Kamyshny A; Magdassi S; Schubert US Adv Mater; 2012 Aug; 24(29):3993-8. PubMed ID: 22718319 [TBL] [Abstract][Full Text] [Related]
17. Oxide rupture-induced conductivity in liquid metal nanoparticles by laser and thermal sintering. Liu S; Reed SN; Higgins MJ; Titus MS; Kramer-Bottiglio R Nanoscale; 2019 Oct; 11(38):17615-17629. PubMed ID: 31274138 [TBL] [Abstract][Full Text] [Related]
18. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures. Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002 [TBL] [Abstract][Full Text] [Related]
19. 3D online submicron scale observation of mixed metal powder's microstructure evolution in high temperature and microwave compound fields. Kang D; Xu F; Hu XF; Dong B; Xiao Y; Xiao TQ ScientificWorldJournal; 2014; 2014():684081. PubMed ID: 24737986 [TBL] [Abstract][Full Text] [Related]
20. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]