These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35299352)

  • 1. Cylindrical-lens-embedded photonic crystal based on self-collimation.
    Xia C; Gutierrez JJ; Kuebler SM; Rumpf RC; Touma J
    Opt Express; 2022 Mar; 30(6):9165-9180. PubMed ID: 35299352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary-lens-embedded photonic crystals.
    Xia C; Bustamante E; Kuebler SM; Martinez NP; Rumpf RC; Touma JE
    Opt Lett; 2022 Jun; 47(12):2943-2946. PubMed ID: 35709021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide-band self-collimation in a low-refractive-index hexagonal lattice.
    Xia C; Kuebler SM; Martinez NP; Martinez M; Rumpf RC; Touma J
    Opt Lett; 2021 May; 46(9):2228-2231. PubMed ID: 33929461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of planar self-collimating photonic crystals.
    Rumpf RC; Pazos JJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jul; 30(7):1297-304. PubMed ID: 24323142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prism lens for beam collimation in a silicon photonic crystal beam-steering device.
    Maeda J; Akiyama D; Ito H; Abe H; Baba T
    Opt Lett; 2019 Dec; 44(23):5780-5783. PubMed ID: 31774778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent control of phase and power in spatially variant self-collimating photonic crystals.
    Gutierrez JJ; Martinez NP; Rumpf RC
    J Opt Soc Am A Opt Image Sci Vis; 2019 Sep; 36(9):1534-1539. PubMed ID: 31503847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain effects and phase transitions in photonic resonator crystals.
    Pier H; Kapon E; Moser M
    Nature; 2000 Oct; 407(6806):880-3. PubMed ID: 11057660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic crystal negative refractive optics.
    Baba T; Abe H; Asatsuma T; Matsumoto T
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1473-81. PubMed ID: 20355537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode.
    Keshri S; Murphy K; Toal V; Naydenova I; Martin S
    Appl Opt; 2018 Aug; 57(22):E163-E172. PubMed ID: 30117852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic crystal and quasi-crystals providing simultaneous light coupling and beam splitting within a low refractive-index slab waveguide.
    Shi J; Pollard ME; Angeles CA; Chen R; Gates JC; Charlton MDB
    Sci Rep; 2017 May; 7(1):1812. PubMed ID: 28500303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-collimating photonic crystal polarization beam splitter.
    Zabelin V; Dunbar LA; Le Thomas N; Houdré R; Kotlyar MV; O'Faolain L; Krauss TF
    Opt Lett; 2007 Mar; 32(5):530-2. PubMed ID: 17392911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband self-collimating phenomenon in a low-loss hybrid plasmonic photonic crystal.
    Zhang L; Zhang W; Wang G; Li Z; Du S; Wang W; Wang L; Sun Q; Zhao W
    Appl Opt; 2018 Feb; 57(4):829-833. PubMed ID: 29400747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Properties of Electrically Tunable Two-Dimensional Photonic Lattice Structures Formed in a Holographic Polymer-Dispersed Liquid Crystal Film: Analysis and Experiment.
    Miki M; Ohira R; Tomita Y
    Materials (Basel); 2014 May; 7(5):3677-3698. PubMed ID: 28788643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial.
    Mocella V; Cabrini S; Chang AS; Dardano P; Moretti L; Rendina I; Olynick D; Harteneck B; Dhuey S
    Phys Rev Lett; 2009 Apr; 102(13):133902. PubMed ID: 19392354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially variant periodic structures in electromagnetics.
    Rumpf RC; Pazos JJ; Digaum JL; Kuebler SM
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice.
    Gao D; Zhou Z; Citrin DS
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):791-5. PubMed ID: 18311251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic crystal waveguides utilizing a modulated lattice structure.
    Ohtera Y; Kawashima T; Sakai Y; Sato T; Yokohama I; Ozawa A; Kawakami S
    Opt Lett; 2002 Dec; 27(24):2158-60. PubMed ID: 18033468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-field self-focusing and -defocusing radiation behaviors of the electroluminescent light sources due to negative refraction.
    Yin YF; Lin YC; Tsai TH; Shen YC; Huang J
    Opt Lett; 2013 Jan; 38(2):184-6. PubMed ID: 23454956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Switchable One-Dimensional Photonic Crystals Based on MOFs with Photomodulatable Refractive Index.
    Zhang Z; Müller K; Heidrich S; Koenig M; Hashem T; Schlöder T; Bléger D; Wenzel W; Heinke L
    J Phys Chem Lett; 2019 Nov; 10(21):6626-6633. PubMed ID: 31596091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength-division multiplexing Si photonic crystal beam steering device for high-throughput parallel sensing.
    Ito H; Tatebe T; Abe H; Baba T
    Opt Express; 2018 Oct; 26(20):26145-26155. PubMed ID: 30469705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.