These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35299367)

  • 21. Chalcogenide-based, all-dielectric, ultrathin metamaterials with perfect, incidence-angle sensitive, mid-infrared absorption: inverse design, analysis, and applications.
    Avrahamy R; Milgrom B; Zohar M; Auslender M
    Nanoscale; 2021 Jul; 13(26):11455-11469. PubMed ID: 34160520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber.
    Chen X; Fan W
    Appl Opt; 2015 Mar; 54(9):2376-82. PubMed ID: 25968524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-wavelength infrared selective emitter for thermal infrared camouflage under a hot environment.
    Zhang J; Wen Z; Zhou Z; Zhou D; Qiu Q; Ge J; Zeng Y; Sun Y; Zhou L; Dai N; Chu J; Hao J
    Opt Express; 2022 Jun; 30(13):24132-24144. PubMed ID: 36225080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of Flexible Wavelength-Selective Metasurface for Infrared Radiation Regulation.
    Zhou J; Zhan Z; Zhu F; Han Y
    ACS Appl Mater Interfaces; 2023 May; 15(17):21629-21639. PubMed ID: 37094293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of highly absorbing metamaterials for infrared frequencies.
    Dayal G; Ramakrishna SA
    Opt Express; 2012 Jul; 20(16):17503-8. PubMed ID: 23038303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental realization of a terahertz all-dielectric metasurface absorber.
    Liu X; Fan K; Shadrivov IV; Padilla WJ
    Opt Express; 2017 Jan; 25(1):191-201. PubMed ID: 28085806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning of polarized room-temperature thermal radiation based on nanogap plasmon resonance.
    Park SJ; Kim YB; Moon YJ; Cho JW; Kim SK
    Opt Express; 2020 May; 28(10):15472-15481. PubMed ID: 32403574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Narrowband mid-infrared thermal emitters based on the Fabry-Perot type of bound states in the continuum.
    Li X; Maqbool E; Han Z
    Opt Express; 2023 Jun; 31(12):20338-20344. PubMed ID: 37381430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.
    Jiang ZH; Yun S; Toor F; Werner DH; Mayer TS
    ACS Nano; 2011 Jun; 5(6):4641-7. PubMed ID: 21456579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient radiational outcoupling of electromagnetic energy from hyperbolic metamaterial resonators.
    Yusupov I; Filonov D; Vosheva T; Podolskiy V; Ginzburg P
    Sci Rep; 2020 Dec; 10(1):21854. PubMed ID: 33318579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable, directional and wavelength selective plasmonic nanoantenna arrays.
    Pellegrini G; Mattei G; Mazzoldi P
    Nanotechnology; 2009 Feb; 20(6):065201. PubMed ID: 19417373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective multi-wavelength infrared emission by stacked gap-plasmon thermal emitters.
    Hsiao HH; Xu BT
    Nanotechnology; 2021 Apr; 32(16):165201. PubMed ID: 33440355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable wavelength selectivity of photonic metamaterials-based thermal devices.
    Tian Y; Ghanekar A; Liu X; Sheng J; Zheng Y
    J Photonics Energy; 2019 Jul; 9(3):. PubMed ID: 34084268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics.
    Lee GJ; Kim DH; Heo SY; Song YM
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53206-53214. PubMed ID: 33172255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards -1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses.
    Zhang J; Jiang H; Gralak B; Enoch S; Tayeb G; Lequime M
    Opt Express; 2007 Jun; 15(12):7720-9. PubMed ID: 19547101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications.
    Grant J; Kenney M; Shah YD; Escorcia-Carranza I; Cumming DRS
    Opt Express; 2018 Apr; 26(8):10408-10420. PubMed ID: 29715978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Densely-tiled metal-insulator-metal metamaterial resonators with quasi- monochromatic thermal emission.
    Ito K; Toshiyoshi H; Iizuka H
    Opt Express; 2016 Jun; 24(12):12803-11. PubMed ID: 27410299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Taming the blackbody with infrared metamaterials as selective thermal emitters.
    Liu X; Tyler T; Starr T; Starr AF; Jokerst NM; Padilla WJ
    Phys Rev Lett; 2011 Jul; 107(4):045901. PubMed ID: 21867022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.