These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35299444)

  • 1. Ultra-strong optical four-wave mixing signal induced by strong exciton-phonon and exciton-plasmon couplings.
    Guo QQ; Liang S; Gong B; Li JB; Xiao S; He MD; Chen LQ
    Opt Express; 2022 Feb; 30(5):6630-6639. PubMed ID: 35299444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-wave mixing signal enhancement and optical bistability of a hybrid metal nanoparticle-quantum dot molecule in a nanomechanical resonator.
    Li JB; Liang S; Xiao S; He MD; Kim NC; Chen LQ; Wu GH; Peng YX; Luo XY; Guo ZP
    Opt Express; 2016 Feb; 24(3):2360-9. PubMed ID: 26906811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS
    Li JB; Tan XL; Ma JH; Xu SQ; Kuang ZW; Liang S; Xiao S; He MD; Kim NC; Luo JH; Chen LQ
    Nanotechnology; 2018 Jun; 29(25):255704. PubMed ID: 29620534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-channel bistable switch based on a monolayer graphene nanoribbon nanoresonator coupled to a metal nanoparticle.
    Xiao XJ; Tan Y; Guo QQ; Li JB; Liang S; Xiao S; Zhong HH; He MD; Liu LH; Luo JH; Chen LQ
    Opt Express; 2020 Feb; 28(3):3136-3146. PubMed ID: 32121987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and Nonlinear Optical Properties of a Doubly Clamped Suspended Monolayer Graphene Nanoribbon Nanoresonator.
    Kosionis SG; Paspalakis E
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity.
    Li JB; Xiao S; Liang S; He MD; Luo JH; Kim NC; Chen LQ
    Opt Express; 2017 Oct; 25(21):25663-25673. PubMed ID: 29041231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS
    Wang M; Krasnok A; Zhang T; Scarabelli L; Liu H; Wu Z; Liz-Marzán LM; Terrones M; Alù A; Zheng Y
    Adv Mater; 2018 May; 30(22):e1705779. PubMed ID: 29659088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable strong exciton-plasmon-exciton coupling in WS
    Jiang P; Song G; Wang Y; Li C; Wang L; Yu L
    Opt Express; 2019 Jun; 27(12):16613-16623. PubMed ID: 31252885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Plasmon-Exciton Coupling in Ag Nanoparticle-Conjugated Polymer Core-Shell Hybrid Nanostructures.
    Petoukhoff CE; Dani KM; O'Carroll DM
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32961735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical bistability in a heterodimer composed of a quantum dot and a metallic nanoshell.
    Zhao WH; He MD; Long LW; Peng YX; Xiao S; Li JB; Chen LQ
    Opt Express; 2023 Aug; 31(18):28805-28815. PubMed ID: 37710692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr
    Becker MA; Scarpelli L; Nedelcu G; Rainò G; Masia F; Borri P; Stöferle T; Kovalenko MV; Langbein W; Mahrt RF
    Nano Lett; 2018 Dec; 18(12):7546-7551. PubMed ID: 30407011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Triplet-Exciton-LO-Phonon Coupling in Two-Dimensional Layered Organic-Inorganic Hybrid Perovskite Single Crystal Microflakes.
    Wang Y; Song F; Yuan Y; Dang J; Xie X; Sun S; Yan S; Hou Y; Lou Z; Xu X
    J Phys Chem Lett; 2021 Mar; 12(8):2133-2141. PubMed ID: 33625855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton-Phonon Interactions in Monolayer Germanium Selenide from First Principles.
    Huang TA; Zacharias M; Lewis DK; Giustino F; Sharifzadeh S
    J Phys Chem Lett; 2021 Apr; 12(15):3802-3808. PubMed ID: 33848154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching freely between superluminal and subluminal light propagation in a monolayer MoS
    Li JB; Xiao S; Liang S; He MD; Kim NC; Luo Y; Luo JH; Chen LQ
    Opt Express; 2017 Jun; 25(12):13567-13576. PubMed ID: 28788900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube.
    Jeantet A; Chassagneux Y; Claude T; Roussignol P; Lauret JS; Reichel J; Voisin C
    Nano Lett; 2017 Jul; 17(7):4184-4188. PubMed ID: 28641011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Exciton-Optomechanical Coupling in Suspended Monolayer MoSe
    Xie H; Jiang S; Rhodes DA; Hone JC; Shan J; Mak KF
    Nano Lett; 2021 Mar; 21(6):2538-2543. PubMed ID: 33720731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton Lifetime and Optical Line Width Profile via Exciton-Phonon Interactions: Theory and First-Principles Calculations for Monolayer MoS
    Chan YH; Haber JB; Naik MH; Neaton JB; Qiu DY; da Jornada FH; Louie SG
    Nano Lett; 2023 May; 23(9):3971-3977. PubMed ID: 37071728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.