These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35299480)

  • 1. Modeling free-carrier absorption in ultrathin III-V solar cells with light management.
    D'Rozario JR; Polly SJ; Nelson GT; Wilt D; Hubbard SM
    Opt Express; 2022 Feb; 30(5):7096-7109. PubMed ID: 35299480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.
    Lee SM; Kwong A; Jung D; Faucher J; Biswas R; Shen L; Kang D; Lee ML; Yoon J
    ACS Nano; 2015 Oct; 9(10):10356-65. PubMed ID: 26376087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High broadband light absorption in ultrathin MoS
    Bueno-Blanco C; Svatek SA; Antolin E
    Opt Express; 2022 Nov; 30(23):42678-42695. PubMed ID: 36366717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.
    Wu Y; Yan X; Wei W; Zhang J; Zhang X; Ren X
    Nanoscale Res Lett; 2018 Apr; 13(1):126. PubMed ID: 29696454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor solar superabsorbers.
    Yu Y; Huang L; Cao L
    Sci Rep; 2014 Feb; 4():4107. PubMed ID: 24531211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paths to light trapping in thin film GaAs solar cells.
    Xiao J; Fang H; Su R; Li K; Song J; Krauss TF; Li J; Martins ER
    Opt Express; 2018 Mar; 26(6):A341-A351. PubMed ID: 29609304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent Quasi-Random Structures for Multimodal Light Trapping in Ultrathin Solar Cells with Broad Engineering Tolerance.
    Camarillo Abad E; Joyce HJ; Hirst LC
    ACS Photonics; 2022 Aug; 9(8):2724-2735. PubMed ID: 35996371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells. Part II: optimal antireflection front-surface texturing.
    Ahmad F; Monk PB; Lakhtakia A
    Appl Opt; 2023 Oct; 62(28):7487-7495. PubMed ID: 37855518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Laterally Oriented Nanowire Solar Cells with Ag Gratings.
    Zhang Y; Li Y; Yuan X; Yan X; Zhang X
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of metal/polymer back reflectors with half-sphere, blazed, and pyramid gratings for light trapping in III-V solar cells.
    Aho T; Guina M; Elsehrawy F; Cappelluti F; Raappana M; Tukiainen A; Alam ABMK; Vartiainen I; Kuittinen M; Niemi T
    Opt Express; 2018 Mar; 26(6):A331-A340. PubMed ID: 29609286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Well-Controlled Dielectric Nanomeshes by Colloidal Nanosphere Lithography for Optoelectronic Enhancement of Ultrathin Cu(In,Ga)Se
    Yin G; Song M; Duan S; Manley P; Greiner D; Kaufmann CA; Schmid M
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31646-31652. PubMed ID: 27768277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells.
    Boroumand J; Das S; Vázquez-Guardado A; Franklin D; Chanda D
    Sci Rep; 2016 Aug; 6():31013. PubMed ID: 27499446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20(23):A864-78. PubMed ID: 23326834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings.
    Wang KX; Yu Z; Liu V; Cui Y; Fan S
    Nano Lett; 2012 Mar; 12(3):1616-9. PubMed ID: 22356436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D back-side diffraction grating for improved light trapping in thin silicon solar cells.
    Gjessing J; Marstein ES; Sudbø A
    Opt Express; 2010 Mar; 18(6):5481-95. PubMed ID: 20389565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of modified double-sided grating structures on efficiency enhancement of thin-film silicon solar cells.
    Panda A; Maiti S; Palodhi K; Chakraborty R
    Appl Opt; 2020 Oct; 59(30):9532-9539. PubMed ID: 33104673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.