These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35299507)
1. Crosstalk-free all-optical switching enabled by Fano resonance in a multi-mode photonic crystal nanocavity. Saudan Q; Bekele DA; Dong G; Yu Y; Yvind K; Mørk J; Galili M Opt Express; 2022 Feb; 30(5):7457-7466. PubMed ID: 35299507 [TBL] [Abstract][Full Text] [Related]
2. Signal reshaping and noise suppression using photonic crystal Fano structures. Bekele DA; Yu Y; Hu H; Guan P; Galili M; Ottaviano L; Oxenløwe LK; Yvind K; Mork J Opt Express; 2018 Jul; 26(15):19596-19605. PubMed ID: 30114130 [TBL] [Abstract][Full Text] [Related]
3. Pulse carving using nanocavity-enhanced nonlinear effects in photonic crystal Fano structures. Bekele DA; Yu Y; Hu H; Guan P; Ottaviano L; Galili M; Oxenløwe LK; Yvind K; Mork J Opt Lett; 2018 Feb; 43(4):955-958. PubMed ID: 29444036 [TBL] [Abstract][Full Text] [Related]
4. Multimode Fano resonances for low-power mode switching. Zheng S; Cao X; Wang J Opt Lett; 2020 Feb; 45(4):1035-1038. PubMed ID: 32058537 [TBL] [Abstract][Full Text] [Related]
5. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Dong G; Wang Y; Zhang X Opt Lett; 2018 Dec; 43(24):5977-5980. PubMed ID: 30547984 [TBL] [Abstract][Full Text] [Related]
6. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Nozaki K; Shinya A; Matsuo S; Sato T; Kuramochi E; Notomi M Opt Express; 2013 May; 21(10):11877-88. PubMed ID: 23736410 [TBL] [Abstract][Full Text] [Related]
7. Improved switching using Fano resonances in photonic crystal structures. Heuck M; Kristensen PT; Elesin Y; Mørk J Opt Lett; 2013 Jul; 38(14):2466-8. PubMed ID: 23939082 [TBL] [Abstract][Full Text] [Related]
8. Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume. Li E; Gao Q; Chen RT; Wang AX Nano Lett; 2018 Feb; 18(2):1075-1081. PubMed ID: 29309164 [TBL] [Abstract][Full Text] [Related]
9. Switching characteristics of an InP photonic crystal nanocavity: experiment and theory. Yu Y; Palushani E; Heuck M; Kuznetsova N; Kristensen PT; Ek S; Vukovic D; Peucheret C; Oxenløwe LK; Combrié S; de Rossi A; Yvind K; Mørk J Opt Express; 2013 Dec; 21(25):31047-61. PubMed ID: 24514679 [TBL] [Abstract][Full Text] [Related]
10. Modulation contrast optimization for wavelength conversion of a 20 Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity. Lengle K; Nguyen TN; Gay M; Bramerie L; Simon JC; Bazin A; Raineri F; Raj R Opt Lett; 2014 Apr; 39(8):2298-301. PubMed ID: 24978977 [TBL] [Abstract][Full Text] [Related]
11. Ultra-sharp asymmetric Fano-like resonance spectrum on Si photonic platform. Du H; Zhang W; Littlejohns CG; Stankovic S; Yan X; Tran DT; Sharp GJ; Gardes FY; Thomson DJ; Sorel M; Mashanovich GZ; Reed GT Opt Express; 2019 Mar; 27(5):7365-7372. PubMed ID: 30876301 [TBL] [Abstract][Full Text] [Related]
12. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Jia H; Zhou T; Zhang L; Ding J; Fu X; Yang L Opt Express; 2017 Aug; 25(17):20698-20707. PubMed ID: 29041748 [TBL] [Abstract][Full Text] [Related]
13. Beam recirculation and mode-order conversion via compact Mach-Zehnder-Fano interferometers. Giden IH Opt Lett; 2022 Oct; 47(19):4961-4964. PubMed ID: 36181161 [TBL] [Abstract][Full Text] [Related]