These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35299570)

  • 1. Low-noise-figure and high-purity 10 vortex modes amplifier based on configurable pump modes.
    Wu Y; Wen J; Zhang M; Wen J; Chen W; Zhang X; Pang F; Tang F; West G; Wang T
    Opt Express; 2022 Feb; 30(5):8248-8256. PubMed ID: 35299570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplifying Orbital Angular Momentum Modes in Ring-Core Erbium-Doped Fiber.
    Liu J; Chen S; Wang H; Zheng S; Zhu L; Wang A; Wang L; Du C; Wang J
    Research (Wash D C); 2020; 2020():7623751. PubMed ID: 32161926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification of 18 OAM modes in a ring-core erbium-doped fiber with low differential modal gain.
    Ma J; Xia F; Chen S; Li S; Wang J
    Opt Express; 2019 Dec; 27(26):38087-38097. PubMed ID: 31878580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplification of 14 orbital angular momentum modes in ring-core erbium-doped fiber with high modal gain.
    Zhang X; Liu J; Chen S; Li W; Du C; Wang J
    Opt Lett; 2021 Nov; 46(22):5647-5650. PubMed ID: 34780427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of 12 OAM Modes in an air-core erbium doped fiber.
    Kang Q; Gregg P; Jung Y; Lim EL; Alam SU; Ramachandran S; Richardson DJ
    Opt Express; 2015 Nov; 23(22):28341-8. PubMed ID: 26561104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 112 orbital angular momentum modes amplification based on a 7RC-EDF with low differential mode gain.
    Wen T; Gao S; Zhang J; Tu J; Li W; Du C; Liu W; Li Z
    Opt Lett; 2023 Jan; 48(1):105-108. PubMed ID: 36563377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Third- and fourth-order orbital angular momentum multiplexed amplification with ultra-low differential mode gain.
    Wen T; Gao S; Li W; Tu J; Du C; Zhou J; Ao Z; Zhang B; Liu W; Li Z
    Opt Lett; 2021 Nov; 46(21):5473-5476. PubMed ID: 34724504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification of 20 orbital angular momentum modes based on a ring-core Yb-doped fiber.
    Ou N; Tu J; Wen T; Li W; Gao S; Du C; Zhou J; Zhang B; Sui Q; Liu W; Li Z
    Opt Express; 2022 May; 30(11):18939-18948. PubMed ID: 36221683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weakly guiding graded-index ring-core fiber supporting 16-channel long distance mode division multiplexing systems based on OAM modes with low MIMO-DSP complexity.
    Zhang X; Chen S; Wang J
    Opt Express; 2022 Sep; 30(20):35828-35839. PubMed ID: 36258525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems.
    Li J; Du J; Ma L; Li MJ; Xu K; He Z
    Opt Express; 2017 Jan; 25(2):810-820. PubMed ID: 28157969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parabolic-Index Ring-Core Fiber Supporting High-Purity Orbital Angular Momentum Modes.
    Liu Y; Wang Y; Geng W; Zhao W; Zhang H; Zhang W; Pan Z; Yue Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes.
    Deng Y; Zhang H; Li H; Tang X; Xi L; Zhang W; Zhang X
    Appl Opt; 2017 Feb; 56(6):1748-1752. PubMed ID: 28234383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber.
    Wang A; Zhu L; Chen S; Du C; Mo Q; Wang J
    Opt Express; 2016 May; 24(11):11716-26. PubMed ID: 27410097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-order orbital angular momentum mode conversion based on a chiral long period fiber grating inscribed in a ring core fiber.
    Huang Z; Bai Z; Liu R; Wu L; Ran J; Chen Z; Zhu G; Liu S; Liao C; Wang Y
    Opt Lett; 2022 Oct; 47(20):5352-5355. PubMed ID: 36240360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network.
    Zhu L; Wang A; Chen S; Liu J; Wang J
    Opt Lett; 2018 Apr; 43(8):1894-1897. PubMed ID: 29652392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex Polymer Optical Fiber with 64 Stable OAM States.
    Borda-Hernández JA; Serpa-Imbett CM; Figueroa HEH
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33255461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-channel higher-order OAM generation and switching based on a mode selective interferometer.
    Wu G; Wu X; Gao S; Tu J; Zhou J; Sui Q; Liu W; Li Z
    Opt Express; 2022 Jul; 30(14):25093-25102. PubMed ID: 36237047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally Tunable Orbital Angular Momentum Mode Generator Based on Dual-Core Photonic Crystal Fibers.
    Zhang L; Zhang X; Liu X; Zhou J; Yang N; Du J; Ding X
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 18  km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation.
    Zhu L; Zhu G; Wang A; Wang L; Ai J; Chen S; Du C; Liu J; Yu S; Wang J
    Opt Lett; 2018 Apr; 43(8):1890-1893. PubMed ID: 29652391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High purity optical vortex generation in a fiber Bragg grating inscribed by a femtosecond laser.
    Li Y; Bai Z; Liu Z; Zhu G; Yang K; Yu J; Chen J; Fu C; Liao C; Wang Y
    Opt Lett; 2020 Dec; 45(24):6679-6682. PubMed ID: 33325869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.