These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 35299653)

  • 1. Microengineered platforms for characterizing the contractile function of in vitro cardiac models.
    Dou W; Malhi M; Zhao Q; Wang L; Huang Z; Law J; Liu N; Simmons CA; Maynes JT; Sun Y
    Microsyst Nanoeng; 2022; 8():26. PubMed ID: 35299653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerations for an
    Ribeiro AJS; Guth BD; Engwall M; Eldridge S; Foley CM; Guo L; Gintant G; Koerner J; Parish ST; Pierson JB; Brock M; Chaudhary KW; Kanda Y; Berridge B
    Front Pharmacol; 2019; 10():934. PubMed ID: 31555128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force.
    Wei X; Zhuang L; Li H; He C; Wan H; Hu N; Wang P
    Small; 2020 Dec; 16(50):e2005828. PubMed ID: 33230867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
    Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous contractile force and electrical signal recordings of 3D cardiac tissue utilizing conductive hydrogel pillars on a chip.
    Zhang F; Cheng H; Qu K; Qian X; Lin Y; Zhang Y; Qian S; Huang N; Cui C; Chen M
    Mater Today Bio; 2023 Jun; 20():100626. PubMed ID: 37122834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers.
    Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M
    Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Cardiac Tissue for Advanced Heart-On-A-Chip Platforms.
    Chen X; Liu S; Han M; Long M; Li T; Hu L; Wang L; Huang W; Wu Y
    Adv Healthc Mater; 2024 Jan; 13(1):e2301338. PubMed ID: 37471526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart-on-a-chip platforms and biosensor integration for disease modeling and phenotypic drug screening.
    Criscione J; Rezaei Z; Hernandez Cantu CM; Murphy S; Shin SR; Kim DH
    Biosens Bioelectron; 2023 Jan; 220():114840. PubMed ID: 36402101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Carbon-Based Biosensing Platform for Simultaneously Measuring the Contraction and Electrophysiology of iPSC-Cardiomyocyte Monolayers.
    Dou W; Malhi M; Cui T; Wang M; Wang T; Shan G; Law J; Gong Z; Plakhotnik J; Filleter T; Li R; Simmons CA; Maynes JT; Sun Y
    ACS Nano; 2022 Jul; 16(7):11278-11290. PubMed ID: 35715006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microengineered Organ-on-a-chip Platforms towards Personalized Medicine.
    Kankala RK; Wang SB; Chen AZ
    Curr Pharm Des; 2018; 24(45):5354-5366. PubMed ID: 30799783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional microengineered models of human cardiac diseases.
    Veldhuizen J; Migrino RQ; Nikkhah M
    J Biol Eng; 2019; 13():29. PubMed ID: 30988697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinted and integrated platforms for cardiac tissue modeling and drug testing.
    Yong U; Kang B; Jang J
    Essays Biochem; 2021 Aug; 65(3):545-554. PubMed ID: 34269790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinted functional and contractile cardiac tissue constructs.
    Wang Z; Lee SJ; Cheng HJ; Yoo JJ; Atala A
    Acta Biomater; 2018 Apr; 70():48-56. PubMed ID: 29452273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling.
    House A; Atalla I; Lee EJ; Guvendiren M
    Adv Nanobiomed Res; 2021 Jan; 1(1):. PubMed ID: 33709087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip.
    Wang L; Wu J; Chen J; Dou W; Zhao Q; Han J; Liu J; Su W; Li A; Liu P; An Z; Xu C; Sun Y
    Talanta; 2021 May; 226():122097. PubMed ID: 33676654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A heart-on-a-chip platform for online monitoring of contractile behavior via digital image processing and piezoelectric sensing technique.
    Sakamiya M; Fang Y; Mo X; Shen J; Zhang T
    Med Eng Phys; 2020 Jan; 75():36-44. PubMed ID: 31706898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues.
    McCrary MW; Bousalis D; Mobini S; Song YH; Schmidt CE
    Acta Biomater; 2020 Jul; 111():1-19. PubMed ID: 32464269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of drug-induced effects on the contractility of an engineered heart tissue derived from human pluripotent stem cells.
    Arefin A; Mendoza M; Dame K; Garcia MI; Strauss DG; Ribeiro AJS
    Front Pharmacol; 2023; 14():1212092. PubMed ID: 37469866
    [No Abstract]   [Full Text] [Related]  

  • 19. Generation of functional cardiac microtissues in a beating heart-on-a-chip.
    Ugolini GS; Visone R; Cruz-Moreira D; Mainardi A; Rasponi M
    Methods Cell Biol; 2018; 146():69-84. PubMed ID: 30037467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation, High-Throughput Screening, and Biobanking of Human-Induced Pluripotent Stem Cell-Derived Cardiac Spheroids.
    Maas RGC; Beekink T; Chirico N; Snijders Blok CJB; Dokter I; Sampaio-Pinto V; van Mil A; Doevendans PA; Buikema JW; Sluijter JPG; Stillitano F
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36971448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.