These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35299701)

  • 1. Estimation of the Continuous Pronation-Supination Movement by Using Multichannel EMG Signal Features and Kalman Filter: Application to Control an Exoskeleton.
    Zhang L; Long J; Zhao R; Cao H; Zhang K
    Front Bioeng Biotechnol; 2021; 9():771255. PubMed ID: 35299701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elbow-flexion force estimation during arm posture dynamically changing between pronation and supination.
    Hu R; Chen X; Huang C; Cao S; Zhang X; Chen X
    J Neural Eng; 2019 Oct; 16(6):066005. PubMed ID: 31261136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic study on combined motion estimation using multichannel surface EMG signals.
    Nagata K; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7865-8. PubMed ID: 22256163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper-limb surface electro-myography at maximum supination and pronation torques: the effect of elbow and forearm angle.
    O'Sullivan LW; Gallwey TJ
    J Electromyogr Kinesiol; 2002 Aug; 12(4):275-85. PubMed ID: 12121684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of arm positions on EMG-reaction time of the biceps brachii for elbow flexion and forearm supination.
    Taniguchi R; Nakamura R; Kasai T
    Percept Mot Skills; 1984 Aug; 59(1):191-4. PubMed ID: 6493934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous joint velocity estimation using CNN-based deep learning for multi-DoF prosthetic wrist for activities of daily living.
    Meng Z; Kang J
    Front Neurorobot; 2023; 17():1185052. PubMed ID: 37744085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for muscle activation during isometric torque generation at the human elbow.
    Buchanan TS; Rovai GP; Rymer WZ
    J Neurophysiol; 1989 Dec; 62(6):1201-12. PubMed ID: 2600619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature.
    Ma X; Liu Y; Song Q; Wang C
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model.
    Zhang S; Yu N; Guo Z; Huo W; Han J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4703-4712. PubMed ID: 38015663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. sEMG-Based Motion Recognition of Upper Limb Rehabilitation Using the Improved Yolo-v4 Algorithm.
    Bu D; Guo S; Li H
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface EMG pattern recognition for real-time control of a wrist exoskeleton.
    Khokhar ZO; Xiao ZG; Menon C
    Biomed Eng Online; 2010 Aug; 9():41. PubMed ID: 20796304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online Adaptive Prediction of Human Motion Intention Based on sEMG.
    Ding Z; Yang C; Wang Z; Yin X; Jiang F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multichannel surface EMG based estimation of bilateral hand kinematics during movements at multiple degrees of freedom.
    Muceli S; Jiang N; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6066-9. PubMed ID: 21097125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.