BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 35299890)

  • 1. Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network.
    Duan Y; Xie E; Liu C; Sun J; Deng J
    Biomed Res Int; 2022; 2022():7173972. PubMed ID: 35299890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of key genes and pathways involved in abdominal aortic aneurysm initiation and progression.
    Su Z; Gu Y
    Vascular; 2022 Aug; 30(4):639-649. PubMed ID: 34139912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening key genes for abdominal aortic aneurysm based on gene expression omnibus dataset.
    Wan L; Huang J; Ni H; Yu G
    BMC Cardiovasc Disord; 2018 Feb; 18(1):34. PubMed ID: 29439675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Verification of a Combined Diagnostic Model for Sarcopenia with Random Forest and Artificial Neural Network.
    Lin S; Chen C; Cai X; Yang F; Fan Y
    Comput Math Methods Med; 2022; 2022():2957731. PubMed ID: 36050999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms.
    Gao H; Wang L; Ren J; Liu Y; Liang S; Zhang B; Sun X
    Gene; 2022 Jun; 827():146472. PubMed ID: 35381314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of key microRNAs and genes associated with abdominal aortic aneurysm based on the gene expression profile.
    Yang P; Cai Z; Wu K; Hu Y; Liu L; Liao M
    Exp Physiol; 2020 Jan; 105(1):160-173. PubMed ID: 31553078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of crucial genes involved in pathogenesis of regional weakening of the aortic wall.
    Zu HL; Liu HW; Wang HY
    Hereditas; 2021 Dec; 158(1):35. PubMed ID: 34852854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment and Analysis of an Artificial Neural Network Model for Early Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques.
    Wu Y; Xiao Q; Wang S; Xu H; Fang Y
    J Inflamm Res; 2023; 16():5667-5676. PubMed ID: 38050562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a joint diagnostic model of thyroid papillary carcinoma with artificial neural network and random forest.
    Wang S; Liu W; Ye Z; Xia X; Guo M
    Front Genet; 2022; 13():957718. PubMed ID: 36276977
    [No Abstract]   [Full Text] [Related]  

  • 10. Construction of ferroptosis-related prediction model for pathogenesis, diagnosis and treatment of ruptured abdominal aortic aneurysm.
    Wang A; Zhou L
    Medicine (Baltimore); 2024 May; 103(19):e38134. PubMed ID: 38728466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics Analysis Reveals the Potential Diagnostic Biomarkers for Abdominal Aortic Aneurysm.
    Xie X; Wang EC; Xu D; Shu X; Zhao YF; Guo D; Fu W; Wang L
    Front Cardiovasc Med; 2021; 8():656263. PubMed ID: 34355024
    [No Abstract]   [Full Text] [Related]  

  • 12. Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network.
    Xie NN; Wang FF; Zhou J; Liu C; Qu F
    Biomed Res Int; 2020; 2020():2613091. PubMed ID: 32884937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role and Mechanism of SIRT6 in Regulating Phenotype Transformation of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm.
    Guan X; Xin H; Xu M; Ji J; Li J
    Comput Math Methods Med; 2022; 2022():3200798. PubMed ID: 35035519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Sequencing Analysis and Multiple Machine Learning Methods Identified G0S2 and HPSE as Novel Biomarkers for Abdominal Aortic Aneurysm.
    Xiong T; Lv XS; Wu GJ; Guo YX; Liu C; Hou FX; Wang JK; Fu YF; Liu FQ
    Front Immunol; 2022; 13():907309. PubMed ID: 35769488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus.
    Lv J; Guo L; Wang JH; Yan YZ; Zhang J; Wang YY; Yu Y; Huang YF; Zhao HP
    World J Gastroenterol; 2019 Jan; 25(2):233-244. PubMed ID: 30670912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and experimental validation of autophagy-related genes in abdominal aortic aneurysm.
    Yuan X; Song Y; Xin H; Zhang L; Liu B; Ma J; Sun R; Guan X; Jiang Z
    Eur J Med Res; 2023 Sep; 28(1):368. PubMed ID: 37737183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics analysis of common key genes and pathways of intracranial, abdominal, and thoracic aneurysms.
    Bi S; Liu R; He L; Li J; Gu J
    BMC Cardiovasc Disord; 2021 Jan; 21(1):14. PubMed ID: 33407182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune-dysregulated neutrophils characterized by upregulation of CXCL1 may be a potential factor in the pathogenesis of abdominal aortic aneurysm and systemic lupus erythematosus.
    Zhang L; Li Q; Zhou C; Zhang Z; Zhang J; Qin X
    Heliyon; 2023 Jul; 9(7):e18037. PubMed ID: 37519764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TYROBP as a molecular target in cholangiocarcinoma, renal cancer and abdominal aortic aneurysm.
    Jia W; Chen L; Hou S; Kang C; Deng H
    Medicine (Baltimore); 2024 Jan; 103(1):e36843. PubMed ID: 38181271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing PPP1R12B and COL1A1 as piRNA pathway genes contributing to abdominal aortic aneurysm through integrated analysis and experimental validation.
    Jia D; Wang K; Huang L; Zhou Z; Zhang Y; Chen N; Yang Q; Wen Z; Jiang H; Yao C; Wu R
    Gene; 2024 Mar; 897():148068. PubMed ID: 38070790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.