BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35299910)

  • 1. Screening of medicinal plants unraveled the leishmanicidal credibility of
    Pyne N; Paul S
    J Parasit Dis; 2022 Mar; 46(1):202-214. PubMed ID: 35299910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Review of the Phytochemical and Pharmacological Potential of an Evergreen Plant Garcinia cowa.
    Chouni A; Paul S
    Chem Biodivers; 2023 Feb; 20(2):e202200910. PubMed ID: 36628555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthones of Garcinia cowa.
    na Pattalung P; Thongtheeraparp W; Wiriyachitra P; Taylor WC
    Planta Med; 1994 Aug; 60(4):365-8. PubMed ID: 7938273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems pharmacology aiding benzimidazole scaffold as potential lead compounds against leishmaniasis for functional therapeutics.
    Kumar A; Nimsarkar P; Singh S
    Life Sci; 2022 Nov; 308():120960. PubMed ID: 36116527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimalarial xanthones from Garcinia cowa.
    Likhitwitayawuid K; Phadungcharoen T; Krungkrai J
    Planta Med; 1998 Feb; 64(1):70-2. PubMed ID: 9491769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro anti-leishmanial efficacy of potato tuber extract (PTEx): leishmanial serine protease(s) as putative target.
    Paik D; Das P; De T; Chakraborti T
    Exp Parasitol; 2014 Nov; 146():11-9. PubMed ID: 25128800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of New Cyclic Imides Derived from Safrole, Structure- and Ligand-based Approaches to Evaluate Potential New Multitarget Agents Against Species of Leishmania.
    de Sousa Luis JA; da Silva Costa NA; Luis CCS; Lira BF; Athayde-Filho PF; de Souza Lima TK; da Câmara Rocha J; Scotti L; Scotti MT
    Med Chem; 2020; 16(1):39-51. PubMed ID: 31208311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Garcicowanones C-E, three new hydrated-geranylated xanthones from the roots of
    An NTK; Van Hien N; Thi Thuy N; Lan Phuong D; Gia Bach H; Tra NT; Quang Tung N; Tham PT; Tai BH; Thu Thuy TT
    Nat Prod Res; 2023; 37(21):3668-3676. PubMed ID: 35856477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly potent cholinesterase inhibition of geranylated xanthones from Garcinia fusca and molecular docking studies.
    Saenkham A; Jaratrungtawee A; Siriwattanasathien Y; Boonsri P; Chainok K; Suksamrarn A; Namsa-Aid M; Pattanaprateeb P; Suksamrarn S
    Fitoterapia; 2020 Oct; 146():104637. PubMed ID: 32470371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic Properties and Complete Nuclear Magnetic Resonance Assignment of Isolated Xanthones from the Root of Garcinia cowa Roxb.
    Wahyuni FS; Shaari K; Stanslas J; Lajis NH; Hamidi D
    Pharmacogn Mag; 2016 Jan; 12(Suppl 1):S52-6. PubMed ID: 27041859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational evaluation of phytochemicals targeting DNA topoisomerase I in
    Arya PK; Mandal P; Barik K; Singh DV; Kumar A
    J Biomol Struct Dyn; 2023 Sep; ():1-14. PubMed ID: 37697722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Performance Thin layer Chromatography: Densitometry Method for Determination of Rubraxanthone in the Stem Bark Extract of
    Hamidi D; Aulia H; Susanti M
    Pharmacognosy Res; 2017; 9(3):230-233. PubMed ID: 28827962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural compounds from plants controlling leishmanial growth via DNA damage and inhibiting trypanothione reductase and trypanothione synthetase: an in vitro and in silico approach.
    Mehwish S; Khan H; Rehman AU; Khan AU; Khan MA; Hayat O; Ahmad M; Wadood A; Ullah N
    3 Biotech; 2019 Aug; 9(8):303. PubMed ID: 31355112
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Matadamas-Martínez F; Hernández-Campos A; Téllez-Valencia A; Vázquez-Raygoza A; Comparán-Alarcón S; Yépez-Mulia L; Castillo R
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzophenone and xanthone derivatives from the inflorescences of Garcinia cowa.
    Trisuwan K; Ritthiwigrom T
    Arch Pharm Res; 2012 Oct; 35(10):1733-8. PubMed ID: 23139123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of potential anti-leishmanial agents using computational investigation and biological evaluation against trypanothione reductase.
    Kuldeep J; R K; Kaur P; Goyal N; Siddiqi MI
    J Biomol Struct Dyn; 2021 Feb; 39(3):960-969. PubMed ID: 31984862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Anti-Leishmanial Assessment of Some Medicinal Plants Collected from Al Qassim, Saudi Arabia.
    Al Nasr I
    Acta Parasitol; 2020 Sep; 65(3):696-703. PubMed ID: 32347535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa.
    Auranwiwat C; Trisuwan K; Saiai A; Pyne SG; Ritthiwigrom T
    Fitoterapia; 2014 Oct; 98():179-83. PubMed ID: 25110196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant and Antiproliferative Activity of Selected Medicinal Plants of Lower Assam, India: An In Vitro and In Silico Study.
    Swargiary A; Verma AK; Singh S; Roy MK; Daimari M
    Anticancer Agents Med Chem; 2021; 21(2):267-277. PubMed ID: 32682384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmania tropica: Docking and molecular insights.
    Majid Shah S; Ullah F; Ayaz M; Sadiq A; Hussain S; Ali Shah AU; Adnan Ali Shah S; Wadood A; Nadhman A
    Steroids; 2019 Aug; 148():56-62. PubMed ID: 31085212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.