These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35300006)

  • 1. Supply Chain Perspectives on Breeding for Legume-Cereal Intercrops.
    Kiær LP; Weedon OD; Bedoussac L; Bickler C; Finckh MR; Haug B; Iannetta PPM; Raaphorst-Travaille G; Weih M; Karley AJ
    Front Plant Sci; 2022; 13():844635. PubMed ID: 35300006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.
    Kermah M; Franke AC; Adjei-Nsiah S; Ahiabor BDK; Abaidoo RC; Giller KE
    Field Crops Res; 2017 Nov; 213():38-50. PubMed ID: 29104356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop Rotation and Intercropping Strategies for Weed Management.
    Liebman M; Dyck E
    Ecol Appl; 1993 Feb; 3(1):92-122. PubMed ID: 27759234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing monocrop breeding strategies for intercrops.
    Dubey R; Zustovi R; Landschoot S; Dewitte K; Verlinden G; Haesaert G; Maenhout S
    Front Plant Sci; 2024; 15():1394413. PubMed ID: 38799097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can cereal-legume intercrop systems contribute to household nutrition in semi-arid environments: A systematic review and meta-analysis.
    Chimonyo VGP; Govender L; Nyathi M; Scheelbeek PFD; Choruma DJ; Mustafa M; Massawe F; Slotow R; Modi AT; Mabhaudhi T
    Front Nutr; 2023; 10():1060246. PubMed ID: 36793925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercropping enhances soil carbon and nitrogen.
    Cong WF; Hoffland E; Li L; Six J; Sun JH; Bao XG; Zhang FS; Van Der Werf W
    Glob Chang Biol; 2015 Apr; 21(4):1715-26. PubMed ID: 25216023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Crop Growth Models to Assist Breeding for Intercropping: Opportunities and Challenges.
    Weih M; Adam E; Vico G; Rubiales D
    Front Plant Sci; 2022; 13():720486. PubMed ID: 35185972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivar Grain Yield in Durum Wheat-Grain Legume Intercrops Could Be Estimated From Sole Crop Yields and Interspecific Interaction Index.
    Kammoun B; Journet EP; Justes E; Bedoussac L
    Front Plant Sci; 2021; 12():733705. PubMed ID: 34721461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixture × Genotype Effects in Cereal/Legume Intercropping.
    Demie DT; Döring TF; Finckh MR; van der Werf W; Enjalbert J; Seidel SJ
    Front Plant Sci; 2022; 13():846720. PubMed ID: 35432405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixing Ability of Intercropped Wheat Varieties: Stability Across Environments and Tester Legume Species.
    Moutier N; Baranger A; Fall S; Hanocq E; Marget P; Floriot M; Gauffreteau A
    Front Plant Sci; 2022; 13():877791. PubMed ID: 35755684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes.
    Amanullah ; Khalid S; Khalil F; Elshikh MS; Alwahibi MS; Alkahtani J; Imranuddin ; Imran
    Sci Rep; 2021 Jun; 11(1):12585. PubMed ID: 34131225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping.
    Li S; van der Werf W; Zhu J; Guo Y; Li B; Ma Y; Evers JB
    J Exp Bot; 2021 May; 72(10):3630-3646. PubMed ID: 33608704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Breeding for Intercropping in Temperate Field Crop Systems: A Review.
    Moore VM; Schlautman B; Fei SZ; Roberts LM; Wolfe M; Ryan MR; Wells S; Lorenz AJ
    Front Plant Sci; 2022; 13():843065. PubMed ID: 35432391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The productive performance of intercropping.
    Li C; Stomph TJ; Makowski D; Li H; Zhang C; Zhang F; van der Werf W
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2201886120. PubMed ID: 36595678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercropping with wheat lowers nutrient uptake and biomass accumulation of maize, but increases photosynthetic rate of the ear leaf.
    Gou F; van Ittersum MK; Couëdel A; Zhang Y; Wang Y; van der Putten PEL; Zhang L; van der Werf W
    AoB Plants; 2018 Feb; 10(1):ply010. PubMed ID: 29479410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable intensification of maize and wheat cropping system through pulse intercropping.
    Tripathi SC; Venkatesh K; Meena RP; Chander S; Singh GP
    Sci Rep; 2021 Sep; 11(1):18805. PubMed ID: 34552117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breeding Beyond Monoculture: Putting the "Intercrop" Into Crops.
    Bourke PM; Evers JB; Bijma P; van Apeldoorn DF; Smulders MJM; Kuyper TW; Mommer L; Bonnema G
    Front Plant Sci; 2021; 12():734167. PubMed ID: 34868116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid transgenerational adaptation in response to intercropping reduces competition.
    Stefan L; Engbersen N; Schöb C
    Elife; 2022 Sep; 11():. PubMed ID: 36097813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eggplant-garlic intercrops reduce the density of Tetranychus urticae on eggplant and improve crop yield.
    Fathi SAA
    Exp Appl Acarol; 2023 Sep; 91(1):43-55. PubMed ID: 37498402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor.
    Zhou L; Wang Y; Xie Z; Zhang Y; Malhi SS; Guo Z; Qiu Y; Wang L
    J Basic Microbiol; 2018 Oct; 58(10):892-901. PubMed ID: 30101457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.