These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Parameterized Complexity of Eulerian Deletion Problems. Cygan M; Marx D; Pilipczuk M; Pilipczuk M; Schlotter I Algorithmica; 2014; 68(1):41-61. PubMed ID: 24415818 [TBL] [Abstract][Full Text] [Related]
3. The Power of Cut-Based Parameters for Computing Edge-Disjoint Paths. Ganian R; Ordyniak S Algorithmica; 2021; 83(2):726-752. PubMed ID: 33707803 [TBL] [Abstract][Full Text] [Related]
4. Exploiting bounded signal flow for graph orientation based on cause-effect pairs. Dorn B; Hüffner F; Krüger D; Niedermeier R; Uhlmann J Algorithms Mol Biol; 2011 Aug; 6():21. PubMed ID: 21867496 [TBL] [Abstract][Full Text] [Related]
5. Subexponential-Time Algorithms for Finding Large Induced Sparse Subgraphs. Novotná J; Okrasa K; Pilipczuk M; Rzążewski P; van Leeuwen EJ; Walczak B Algorithmica; 2021; 83(8):2634-2650. PubMed ID: 34720297 [TBL] [Abstract][Full Text] [Related]
6. Parameterized Complexity and Inapproximability of Dominating Set Problem in Chordal and Near Chordal Graphs. Liu C; Song Y J Comb Optim; 2010 Apr; 20(2):1-15. PubMed ID: 23874144 [TBL] [Abstract][Full Text] [Related]
7. Tractable Cases of (*,2)-Bounded Parsimony Haplotyping. Keijsper J; Oosterwijk T IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):234-47. PubMed ID: 26357092 [TBL] [Abstract][Full Text] [Related]
8. Non-Preemptive Tree Packing. Lendl S; Woeginger G; Wulf L Algorithmica; 2023; 85(3):783-804. PubMed ID: 36883187 [TBL] [Abstract][Full Text] [Related]
11. The Connected Bai C; Zhou J; Liang Z Comput Intell Neurosci; 2021; 2021():3533623. PubMed ID: 34992643 [TBL] [Abstract][Full Text] [Related]
12. Sitting Closer to Friends than Enemies, Revisited. Cygan M; Pilipczuk M; Pilipczuk M; Wojtaszczyk JO Theory Comput Syst; 2015; 56(2):394-405. PubMed ID: 26300686 [TBL] [Abstract][Full Text] [Related]
13. Revisiting the complexity of and algorithms for the graph traversal edit distance and its variants. Qiu Y; Shen Y; Kingsford C Algorithms Mol Biol; 2024 Apr; 19(1):17. PubMed ID: 38679703 [TBL] [Abstract][Full Text] [Related]
14. Revisiting the Complexity of and Algorithms for the Graph Traversal Edit Distance and Its Variants. Qiu Y; Shen Y; Kingsford C ArXiv; 2023 Nov; ():. PubMed ID: 37292475 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of neural networks over undirected graphs. Goles E; Ruz GA Neural Netw; 2015 Mar; 63():156-69. PubMed ID: 25544654 [TBL] [Abstract][Full Text] [Related]
16. An Efficient Algorithm to Count Tree-Like Graphs with a Given Number of Vertices and Self-Loops. Azam NA; Shurbevski A; Nagamochi H Entropy (Basel); 2020 Aug; 22(9):. PubMed ID: 33286692 [TBL] [Abstract][Full Text] [Related]
17. Complexity of Secure Sets. Bliem B; Woltran S Algorithmica; 2018; 80(10):2909-2940. PubMed ID: 29937611 [TBL] [Abstract][Full Text] [Related]
18. On the VC-Dimension of Unique Round-Trip Shortest Path Systems. Zhu CJ; Lam KY; Yin Ng JK; Bi J Inf Process Lett; 2019 May; 145():1-5. PubMed ID: 31741499 [TBL] [Abstract][Full Text] [Related]
19. Are randomly grown graphs really random? Callaway DS; Hopcroft JE; Kleinberg JM; Newman ME; Strogatz SH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041902. PubMed ID: 11690047 [TBL] [Abstract][Full Text] [Related]
20. The Complexity of Optimal Design of Temporally Connected Graphs. Akrida EC; Gąsieniec L; Mertzios GB; Spirakis PG Theory Comput Syst; 2017; 61(3):907-944. PubMed ID: 32025196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]