These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35300190)

  • 1. Supercritical fluid technology for solubilization of poorly water soluble drugs via micro- and naonosized particle generation.
    Misra SK; Pathak K
    ADMET DMPK; 2020; 8(4):355-374. PubMed ID: 35300190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
    Abuzar SM; Hyun SM; Kim JH; Park HJ; Kim MS; Park JS; Hwang SJ
    Int J Pharm; 2018 Mar; 538(1-2):1-13. PubMed ID: 29278733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical fluid technology: a promising approach in pharmaceutical research.
    Girotra P; Singh SK; Nagpal K
    Pharm Dev Technol; 2013 Feb; 18(1):22-38. PubMed ID: 23036159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review on the particle generation and other applications of rapid expansion of supercritical solution.
    Kumar R; Thakur AK; Banerjee N; Chaudhari P
    Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques.
    Soh SH; Lee LY
    Pharmaceutics; 2019 Jan; 11(1):. PubMed ID: 30621309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.
    Mishima K
    Adv Drug Deliv Rev; 2008 Feb; 60(3):411-32. PubMed ID: 18061302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS).
    Müllers KC; Paisana M; Wahl MA
    Pharm Res; 2015 Feb; 32(2):702-13. PubMed ID: 25213775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives.
    Kumar R; Thakur AK; Kali G; Pitchaiah KC; Arya RK; Kulabhi A
    Drug Deliv Transl Res; 2023 Apr; 13(4):946-965. PubMed ID: 36575354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micronization of Ibuprofen Particles Using Supercritical Fluid Technology.
    Sosna T; Mikeska M; Dutko O; Martynková GS; Škrlová K; Barabaszová KČ; Dčedková K; Peikertová P; Plachá D
    J Nanosci Nanotechnol; 2019 May; 19(5):2814-2820. PubMed ID: 30501785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs).
    Kankala RK; Xu PY; Chen BQ; Wang SB; Chen AZ
    Adv Drug Deliv Rev; 2021 Sep; 176():113846. PubMed ID: 34197896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Pharm Res; 2008 Mar; 25(3):563-77. PubMed ID: 17828444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T; Takeuchi H; Kawashima Y
    Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs.
    Tran P; Park JS
    Int J Pharm; 2021 Dec; 610():121247. PubMed ID: 34740762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal doping aided by rapid expansion of supercritical solutions.
    Vemavarapu C; Mollan MJ; Needham TE
    AAPS PharmSciTech; 2002; 3(4):E29. PubMed ID: 12916923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of supercritical fluids to enhance the dissolution behaviors of Furosemide by generation of microparticles and solid dispersions.
    De Zordi N; Moneghini M; Kikic I; Grassi M; Del Rio Castillo AE; Solinas D; Bolger MB
    Eur J Pharm Biopharm; 2012 May; 81(1):131-41. PubMed ID: 22266263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical carbon dioxide solubility measurement and modelling for effective size reduction of nifedipine particles for transdermal application.
    Massias T; de Paiva Lacerda S; Resende de Azevedo J; Letourneau JJ; Bolzinger MA; Espitalier F
    Int J Pharm; 2023 Jan; 630():122425. PubMed ID: 36436744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.