These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35300190)

  • 21. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supercritical fluid processing of drug nanoparticles in stable suspension.
    Pathak P; Meziani MJ; Desai T; Foster C; Diaz JA; Sun YP
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2542-5. PubMed ID: 17663280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micronization of dihydroartemisinin by rapid expansion of supercritical solutions.
    Chingunpitak J; Puttipipatkhachorn S; Tozuka Y; Moribe K; Yamamoto K
    Drug Dev Ind Pharm; 2008 Jun; 34(6):609-17. PubMed ID: 18568911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercritical fluid particle design for poorly water-soluble drugs (review).
    Sun Y
    Curr Pharm Des; 2014; 20(3):349-68. PubMed ID: 23651403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions.
    Shekunov BY; Chattopadhyay P; Seitzinger J; Huff R
    Pharm Res; 2006 Jan; 23(1):196-204. PubMed ID: 16307386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dense CO₂ as a Solute, Co-Solute or Co-Solvent in Particle Formation Processes: A Review.
    Nunes AVM; Duarte CMM
    Materials (Basel); 2011 Nov; 4(11):2017-2041. PubMed ID: 28824121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of dense gas techniques for the production of fine particles.
    Foster NR; Dehghani F; Charoenchaitrakoo KM; Warwick B
    AAPS PharmSci; 2003; 5(2):E11. PubMed ID: 12866938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supercritical fluid technology: concepts and pharmaceutical applications.
    Deshpande PB; Kumar GA; Kumar AR; Shavi GV; Karthik A; Reddy MS; Udupa N
    PDA J Pharm Sci Technol; 2011; 65(3):333-44. PubMed ID: 22293238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution-enhanced dispersion by supercritical fluids: an ecofriendly nanonization approach for processing biomaterials and pharmaceutical compounds.
    Kankala RK; Chen BQ; Liu CG; Tang HX; Wang SB; Chen AZ
    Int J Nanomedicine; 2018; 13():4227-4245. PubMed ID: 30087558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmaceutical Applications of Supercritical Fluid Extraction of Emulsions for Micro-/Nanoparticle Formation.
    Park H; Kim JS; Kim S; Ha ES; Kim MS; Hwang SJ
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An overview on in situ micronization technique - An emerging novel concept in advanced drug delivery.
    Vandana KR; Prasanna Raju Y; Harini Chowdary V; Sushma M; Vijay Kumar N
    Saudi Pharm J; 2014 Sep; 22(4):283-9. PubMed ID: 25161371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Particle Formation and Product Formulation Using Supercritical Fluids.
    Knez Ž; Knez Hrnčič M; Škerget M
    Annu Rev Chem Biomol Eng; 2015; 6():379-407. PubMed ID: 26091976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carotenoids microencapsulation by spray drying method and supercritical micronization.
    Janiszewska-Turak E
    Food Res Int; 2017 Sep; 99(Pt 2):891-901. PubMed ID: 28847426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.
    Kalani M; Yunus R
    Int J Nanomedicine; 2012; 7():2165-72. PubMed ID: 22619552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of Polymer-Carbon Nanotube Composites by Two-Step Supercritical Fluid Treatment.
    Vorobei AM; Ustinovich KB; Chernyak SA; Savilov SV; Parenago OO; Kiselev MG
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of ultrafine deferasirox particles via rapid expansion of supercritical solution (RESS process) using Taguchi approach.
    Asghari I; Esmaeilzadeh F
    Int J Pharm; 2012 Aug; 433(1-2):149-56. PubMed ID: 22583849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives.
    Kumar R; Thakur AK; Banerjee N; Kumar A; Gaurav GK; Arya RK
    Drug Deliv Transl Res; 2023 Feb; 13(2):400-418. PubMed ID: 35953765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous micronization and purification of bioactive fraction by supercritical antisolvent technology.
    Hiendrawan S; Veriansyah B; Widjojokusumo E; Tjandrawinata RR
    J Adv Pharm Technol Res; 2017; 8(2):52-58. PubMed ID: 28516056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application of supercritical solution rapid expansion technology in preparation of fine pharmacal particles].
    Zhang ZY; Li HL; Lei ZJ
    Zhongguo Zhong Yao Za Zhi; 2006 Dec; 31(23):1933-6. PubMed ID: 17348181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.