BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 35300341)

  • 1. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy.
    Xu Y; Chen C; Guo Y; Hu S; Sun Z
    Front Immunol; 2022; 13():848327. PubMed ID: 35300341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression.
    Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K
    Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy.
    Zhang Z; Wang Q; Liu Q; Zheng Y; Zheng C; Yi K; Zhao Y; Gu Y; Wang Y; Wang C; Zhao X; Shi L; Kang C; Liu Y
    Adv Mater; 2019 Dec; 31(51):e1905751. PubMed ID: 31709671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy.
    Wei S; Shao X; Liu Y; Xiong B; Cui P; Liu Z; Li Q
    J Mater Chem B; 2022 Feb; 10(8):1291-1300. PubMed ID: 35141737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications and advances of CRISPR-Cas9 in cancer immunotherapy.
    Xia AL; He QF; Wang JC; Zhu J; Sha YQ; Sun B; Lu XJ
    J Med Genet; 2019 Jan; 56(1):4-9. PubMed ID: 29970486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells.
    Liao Y; Chen L; Feng Y; Shen J; Gao Y; Cote G; Choy E; Harmon D; Mankin H; Hornicek F; Duan Z
    Oncotarget; 2017 May; 8(18):30276-30287. PubMed ID: 28415820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy.
    Wu HY; Cao CY
    Brief Funct Genomics; 2019 Mar; 18(2):129-132. PubMed ID: 29579146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells.
    Rupp LJ; Schumann K; Roybal KT; Gate RE; Ye CJ; Lim WA; Marson A
    Sci Rep; 2017 Apr; 7(1):737. PubMed ID: 28389661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges.
    Cheng X; Fan S; Wen C; Du X
    Brief Funct Genomics; 2020 May; 19(3):209-214. PubMed ID: 32052006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization.
    Fierro J; DiPasquale J; Perez J; Chin B; Chokpapone Y; Tran AM; Holden A; Factoriza C; Sivagnanakumar N; Aguilar R; Mazal S; Lopez M; Dou H
    Sci Rep; 2022 Feb; 12(1):2417. PubMed ID: 35165339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer.
    Wang SW; Gao C; Zheng YM; Yi L; Lu JC; Huang XY; Cai JB; Zhang PF; Cui YH; Ke AW
    Mol Cancer; 2022 Feb; 21(1):57. PubMed ID: 35189910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Roles of microRNAs in Regulating the Expression of PD-1/PD-L1 Immune Checkpoint.
    Wang Q; Lin W; Tang X; Li S; Guo L; Lin Y; Kwok HF
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landscape of PD-1/PD-L1 Regulation and Targeted Immunotherapy.
    Ni JM; Ni AP
    Chin Med Sci J; 2018 Sep; 33(3):174-182. PubMed ID: 30266108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and clinical applications of cancer immunotherapy against PD-1 signaling pathway.
    Wakabayashi G; Lee YC; Luh F; Kuo CN; Chang WC; Yen Y
    J Biomed Sci; 2019 Dec; 26(1):96. PubMed ID: 31801525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions.
    Hu W; Zi Z; Jin Y; Li G; Shao K; Cai Q; Ma X; Wei F
    Cancer Immunol Immunother; 2019 Mar; 68(3):365-377. PubMed ID: 30523370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A carrier-free multiplexed gene editing system applicable for suspension cells.
    Ju A; Lee SW; Lee YE; Han KC; Kim JC; Shin SC; Park HJ; EunKyeong Kim E; Hong S; Jang M
    Biomaterials; 2019 Oct; 217():119298. PubMed ID: 31280073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth.
    Nakazawa T; Natsume A; Nishimura F; Morimoto T; Matsuda R; Nakamura M; Yamada S; Nakagawa I; Motoyama Y; Park YS; Tsujimura T; Wakabayashi T; Nakase H
    Cells; 2020 Apr; 9(4):. PubMed ID: 32316275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells.
    Hu B; Zou Y; Zhang L; Tang J; Niedermann G; Firat E; Huang X; Zhu X
    Hum Gene Ther; 2019 Apr; 30(4):446-458. PubMed ID: 29706119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.