These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 35300341)
1. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Xu Y; Chen C; Guo Y; Hu S; Sun Z Front Immunol; 2022; 13():848327. PubMed ID: 35300341 [TBL] [Abstract][Full Text] [Related]
2. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189 [TBL] [Abstract][Full Text] [Related]
3. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy. Zhang Z; Wang Q; Liu Q; Zheng Y; Zheng C; Yi K; Zhao Y; Gu Y; Wang Y; Wang C; Zhao X; Shi L; Kang C; Liu Y Adv Mater; 2019 Dec; 31(51):e1905751. PubMed ID: 31709671 [TBL] [Abstract][Full Text] [Related]
4. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy. Wei S; Shao X; Liu Y; Xiong B; Cui P; Liu Z; Li Q J Mater Chem B; 2022 Feb; 10(8):1291-1300. PubMed ID: 35141737 [TBL] [Abstract][Full Text] [Related]
5. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. Xia AL; He QF; Wang JC; Zhu J; Sha YQ; Sun B; Lu XJ J Med Genet; 2019 Jan; 56(1):4-9. PubMed ID: 29970486 [TBL] [Abstract][Full Text] [Related]
6. Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Liao Y; Chen L; Feng Y; Shen J; Gao Y; Cote G; Choy E; Harmon D; Mankin H; Hornicek F; Duan Z Oncotarget; 2017 May; 8(18):30276-30287. PubMed ID: 28415820 [TBL] [Abstract][Full Text] [Related]
7. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy. Wu HY; Cao CY Brief Funct Genomics; 2019 Mar; 18(2):129-132. PubMed ID: 29579146 [TBL] [Abstract][Full Text] [Related]
8. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Moawad AA; Alwanian WM; Almansour NM; Rahmani AH; Khan AA Int J Nanomedicine; 2023; 18():5531-5559. PubMed ID: 37795042 [TBL] [Abstract][Full Text] [Related]
9. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Rupp LJ; Schumann K; Roybal KT; Gate RE; Ye CJ; Lim WA; Marson A Sci Rep; 2017 Apr; 7(1):737. PubMed ID: 28389661 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Cheng X; Fan S; Wen C; Du X Brief Funct Genomics; 2020 May; 19(3):209-214. PubMed ID: 32052006 [TBL] [Abstract][Full Text] [Related]
11. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Zhou Z; Wang H; Li J; Jiang X; Li Z; Shen J Int J Biol Macromol; 2024 Jan; 254(Pt 2):127911. PubMed ID: 37939766 [TBL] [Abstract][Full Text] [Related]
12. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Fierro J; DiPasquale J; Perez J; Chin B; Chokpapone Y; Tran AM; Holden A; Factoriza C; Sivagnanakumar N; Aguilar R; Mazal S; Lopez M; Dou H Sci Rep; 2022 Feb; 12(1):2417. PubMed ID: 35165339 [TBL] [Abstract][Full Text] [Related]
13. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Wang SW; Gao C; Zheng YM; Yi L; Lu JC; Huang XY; Cai JB; Zhang PF; Cui YH; Ke AW Mol Cancer; 2022 Feb; 21(1):57. PubMed ID: 35189910 [TBL] [Abstract][Full Text] [Related]
14. Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy. Lu Q; Chen R; Du S; Chen C; Pan Y; Luan X; Yang J; Zeng F; He B; Han X; Song Y Biomaterials; 2022 Dec; 291():121871. PubMed ID: 36323073 [TBL] [Abstract][Full Text] [Related]
15. HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy. Zhao L; Li D; Zhang Y; Huang Q; Zhang Z; Chen C; Xu CF; Chu X; Zhang Y; Yang X ACS Nano; 2022 Sep; 16(9):13821-13833. PubMed ID: 35993350 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Mollanoori H; Shahraki H; Rahmati Y; Teimourian S Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221 [TBL] [Abstract][Full Text] [Related]
17. Folate Receptor-Mediated Delivery of Cas9 RNP for Enhanced Immune Checkpoint Disruption in Cancer Cells. Lin Y; Wilk U; Pöhmerer J; Hörterer E; Höhn M; Luo X; Mai H; Wagner E; Lächelt U Small; 2023 Jan; 19(2):e2205318. PubMed ID: 36399647 [TBL] [Abstract][Full Text] [Related]
18. Lymphopenic condition enhanced the antitumor immunity of PD-1-knockout T cells mediated by CRISPR/Cas9 system in malignant melanoma. Yang Z; Wu H; Lin Q; Wang X; Kang S Immunol Lett; 2022 Oct; 250():15-22. PubMed ID: 36174769 [TBL] [Abstract][Full Text] [Related]
19. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591 [TBL] [Abstract][Full Text] [Related]
20. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Liu Z; Shi M; Ren Y; Xu H; Weng S; Ning W; Ge X; Liu L; Guo C; Duo M; Li L; Li J; Han X Mol Cancer; 2023 Feb; 22(1):35. PubMed ID: 36797756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]