These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35300981)

  • 1. The nuclease activity of DNA2 promotes exonuclease 1-independent mismatch repair.
    Kadyrova LY; Dahal BK; Gujar V; Daley JM; Sung P; Kadyrov FA
    J Biol Chem; 2022 Apr; 298(4):101831. PubMed ID: 35300981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exo1 independent DNA mismatch repair involves multiple compensatory nucleases.
    Desai A; Gerson S
    DNA Repair (Amst); 2014 Sep; 21():55-64. PubMed ID: 25037770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exonuclease 1-dependent and independent mismatch repair.
    Goellner EM; Putnam CD; Kolodner RD
    DNA Repair (Amst); 2015 Aug; 32():24-32. PubMed ID: 25956862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins.
    Bowen N; Smith CE; Srivatsan A; Willcox S; Griffith JD; Kolodner RD
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18472-7. PubMed ID: 24187148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α.
    Liberti SE; Larrea AA; Kunkel TA
    DNA Repair (Amst); 2013 Feb; 12(2):92-6. PubMed ID: 23245696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro.
    Liu D; Frederiksen JH; Liberti SE; Lützen A; Keijzers G; Pena-Diaz J; Rasmussen LJ
    Nucleic Acids Res; 2017 Sep; 45(16):9427-9440. PubMed ID: 28934474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.
    Smith CE; Bowen N; Graham WJ; Goellner EM; Srivatsan A; Kolodner RD
    J Biol Chem; 2015 Aug; 290(35):21580-90. PubMed ID: 26170454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair.
    Kadyrov FA; Genschel J; Fang Y; Penland E; Edelmann W; Modrich P
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8495-500. PubMed ID: 19420220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair.
    Nimonkar AV; Genschel J; Kinoshita E; Polaczek P; Campbell JL; Wyman C; Modrich P; Kowalczykowski SC
    Genes Dev; 2011 Feb; 25(4):350-62. PubMed ID: 21325134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 9-1-1 checkpoint clamp stimulates DNA resection by Dna2-Sgs1 and Exo1.
    Ngo GH; Balakrishnan L; Dubarry M; Campbell JL; Lydall D
    Nucleic Acids Res; 2014; 42(16):10516-28. PubMed ID: 25122752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of
    Bowen N; Kolodner RD
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):3607-3612. PubMed ID: 28265089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta.
    Budd ME; Reis CC; Smith S; Myung K; Campbell JL
    Mol Cell Biol; 2006 Apr; 26(7):2490-500. PubMed ID: 16537895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MutLγ promotes repeat expansion in a Fragile X mouse model while EXO1 is protective.
    Zhao X; Zhang Y; Wilkins K; Edelmann W; Usdin K
    PLoS Genet; 2018 Oct; 14(10):e1007719. PubMed ID: 30312299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres.
    Budd ME; Campbell JL
    J Biol Chem; 2013 Oct; 288(41):29414-29. PubMed ID: 23963457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rad27 and Exo1 function in different excision pathways for mismatch repair in Saccharomyces cerevisiae.
    Calil FA; Li BZ; Torres KA; Nguyen K; Bowen N; Putnam CD; Kolodner RD
    Nat Commun; 2021 Sep; 12(1):5568. PubMed ID: 34552065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exo1 phosphorylation status controls the hydroxyurea sensitivity of cells lacking the Pol32 subunit of DNA polymerases delta and zeta.
    Doerfler L; Schmidt KH
    DNA Repair (Amst); 2014 Dec; 24():26-36. PubMed ID: 25457771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1-Dna2 in long-range DNA end resection.
    Wang W; Daley JM; Kwon Y; Xue X; Krasner DS; Miller AS; Nguyen KA; Williamson EA; Shim EY; Lee SE; Hromas R; Sung P
    J Biol Chem; 2018 Nov; 293(44):17061-17069. PubMed ID: 30224356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells.
    Karanja KK; Lee EH; Hendrickson EA; Campbell JL
    Cell Cycle; 2014; 13(10):1540-50. PubMed ID: 24626199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does a helicase activity help mismatch repair in eukaryotes?
    Song L; Yuan F; Zhang Y
    IUBMB Life; 2010 Jul; 62(7):548-53. PubMed ID: 20552646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair.
    Kratz K; Artola-Borán M; Kobayashi-Era S; Koh G; Oliveira G; Kobayashi S; Oliveira A; Zou X; Richter J; Tsuda M; Sasanuma H; Takeda S; Loizou JI; Sartori AA; Nik-Zainal S; Jiricny J
    Mol Cell Biol; 2021 Aug; 41(9):e0030321. PubMed ID: 34228493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.