BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35301142)

  • 1. Temporal information extraction with the scalable cross-sentence context for electronic health records.
    Zhao S; Li L
    J Biomed Inform; 2022 Apr; 128():104052. PubMed ID: 35301142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associative attention networks for temporal relation extraction from electronic health records.
    Zhao S; Li L; Lu H; Zhou A; Qian S
    J Biomed Inform; 2019 Nov; 99():103309. PubMed ID: 31627021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered temporal modeling for the clinical domain.
    Lin C; Dligach D; Miller TA; Bethard S; Savova GK
    J Am Med Inform Assoc; 2016 Mar; 23(2):387-95. PubMed ID: 26521301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting temporal information from electronic patient records.
    Li M; Patrick J
    AMIA Annu Symp Proc; 2012; 2012():542-51. PubMed ID: 23304326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A customized method for information extraction from unstructured text data in the electronic medical records].
    Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiautomatic Identification of Pulmonary Embolism in Electronic Health Records Through Sentence Labeling.
    Danilov G; Ishankulov T; Kosyrkova A; Shults M; Melchenko S; Tsukanova T; Shifrin M; Potapov A
    Stud Health Technol Inform; 2022 Jan; 289():69-72. PubMed ID: 35062094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid approach for named entity recognition in Chinese electronic medical record.
    Ji B; Liu R; Li S; Yu J; Wu Q; Tan Y; Wu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):64. PubMed ID: 30961597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble method-based extraction of medication and related information from clinical texts.
    Kim Y; Meystre SM
    J Am Med Inform Assoc; 2020 Jan; 27(1):31-38. PubMed ID: 31282932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of temporal relations from clinical free text: A systematic review of current approaches.
    Alfattni G; Peek N; Nenadic G
    J Biomed Inform; 2020 Aug; 108():103488. PubMed ID: 32673788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new algorithmic approach for the extraction of temporal associations from clinical narratives with an application to medical product safety surveillance reports.
    Wang W; Kreimeyer K; Woo EJ; Ball R; Foster M; Pandey A; Scott J; Botsis T
    J Biomed Inform; 2016 Aug; 62():78-89. PubMed ID: 27327528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal learning for temporal relation extraction in clinical texts.
    Knez T; Žitnik S
    J Am Med Inform Assoc; 2024 May; 31(6):1380-1387. PubMed ID: 38531680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adverse drug event and medication extraction in electronic health records via a cascading architecture with different sequence labeling models and word embeddings.
    Dai HJ; Su CH; Wu CS
    J Am Med Inform Assoc; 2020 Jan; 27(1):47-55. PubMed ID: 31334805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Detection of Substance-Use Status and Related Information from Clinical Text.
    Alzubi R; Alzoubi H; Katsigiannis S; West D; Ramzan N
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing the patient's natural history from electronic health records.
    Najafabadipour M; Zanin M; Rodríguez-González A; Torrente M; Nuñez García B; Cruz Bermudez JL; Provencio M; Menasalvas E
    Artif Intell Med; 2020 May; 105():101860. PubMed ID: 32505419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
    Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal reasoning with medical data--a review with emphasis on medical natural language processing.
    Zhou L; Hripcsak G
    J Biomed Inform; 2007 Apr; 40(2):183-202. PubMed ID: 17317332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text.
    Li Z; Yang Z; Shen C; Xu J; Zhang Y; Xu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):22. PubMed ID: 30700301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.