These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35301357)

  • 21. Multi-block poloxamer surfactants suppress aggregation of denatured proteins.
    Mustafi D; Smith CM; Makinen MW; Lee RC
    Biochim Biophys Acta; 2008 Jan; 1780(1):7-15. PubMed ID: 17951011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elastic and transparent ovalbumin hydrogels formed via succinylation combined with pH-shifting treatment.
    Hu G; Huang X; Ma J; Ma L; Ma M; Li S
    Food Res Int; 2023 Mar; 165():112174. PubMed ID: 36869442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The application of plastic compression to modulate fibrin hydrogel mechanical properties.
    Haugh MG; Thorpe SD; Vinardell T; Buckley CT; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Dec; 16():66-72. PubMed ID: 23149099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size.
    He M; Zhao Y; Duan J; Wang Z; Chen Y; Zhang L
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1872-8. PubMed ID: 24405277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly compressive and stretchable poly(ethylene glycol) based hydrogels synthesised using pH-responsive nanogels without free-radical chemistry.
    Nguyen NT; Milani AH; Jennings J; Adlam DJ; Freemont AJ; Hoyland JA; Saunders BR
    Nanoscale; 2019 Apr; 11(16):7921-7930. PubMed ID: 30964497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic Silk Fibroin Hydrogels with Tunable Strength.
    Yao D; Li M; Wang T; Sun F; Su C; Shi T
    ACS Biomater Sci Eng; 2021 Feb; 7(2):636-647. PubMed ID: 33393282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermoresponsive BSA hydrogels with phase tunability.
    Khanna S; Singh AK; Behera SP; Gupta S
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111590. PubMed ID: 33321635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pigeon egg white lysozyme. Purification, structural and enzymic characterization.
    Gavilanes JG; de Buitrago GG; del Pozo AM; Pérez-Castells R; Rodríguez R
    Int J Pept Protein Res; 1982 Sep; 20(3):238-45. PubMed ID: 7129756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.
    Zhao Y; Zhu ZS; Guan J; Wu SJ
    Acta Biomater; 2021 Apr; 125():57-71. PubMed ID: 33601067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogels for an accommodating intraocular lens. An explorative study.
    de Groot JH; Spaans CJ; van Calck RV; van Beijma FJ; Norrby S; Pennings AJ
    Biomacromolecules; 2003; 4(3):608-16. PubMed ID: 12741776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and Characterization of Chitosan/β-Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide.
    Qin H; Wang J; Wang T; Gao X; Wan Q; Pei X
    Front Chem; 2018; 6():565. PubMed ID: 30555817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical properties of alginate hydrogels manufactured using external gelation.
    Kaklamani G; Cheneler D; Grover LM; Adams MJ; Bowen J
    J Mech Behav Biomed Mater; 2014 Aug; 36():135-42. PubMed ID: 24841676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of stewing with tea polyphenol on the gel properties, microstructure, and secondary structure of boiled egg white.
    Xue H; Xu M; Zhang G; Feng F; Wang Y; Cao D; Tu Y; Zhao Y
    J Food Sci; 2021 Oct; 86(10):4262-4274. PubMed ID: 34564852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and properties of silk hydrogels.
    Kim UJ; Park J; Li C; Jin HJ; Valluzzi R; Kaplan DL
    Biomacromolecules; 2004; 5(3):786-92. PubMed ID: 15132662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D direct writing egg white hydrogel promotes diabetic chronic wound healing via self-relied bioactive property.
    Guo L; Niu X; Chen X; Lu F; Gao J; Chang Q
    Biomaterials; 2022 Mar; 282():121406. PubMed ID: 35182859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties of PNIPAM based hydrogels: A review.
    Haq MA; Su Y; Wang D
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):842-855. PubMed ID: 27770962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple modulations for supramolecular hydrogels of bola-form surfactants bearing rigid and flexible groups.
    Yin C; Jiang F; Li B; Wu L
    Soft Matter; 2019 Jun; 15(25):5034-5041. PubMed ID: 31173039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.