BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35301396)

  • 1. Cooler canopy leverages sorghum adaptation to drought and heat stress.
    Pradhan A; Aher L; Hegde V; Jangid KK; Rane J
    Sci Rep; 2022 Mar; 12(1):4603. PubMed ID: 35301396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi.
    Ohnishi N; Wacera W F; Sakamoto W
    Plant Cell Physiol; 2019 Sep; 60(9):2086-2099. PubMed ID: 31147706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.
    Zhou R; Yu X; Ottosen CO; Rosenqvist E; Zhao L; Wang Y; Yu W; Zhao T; Wu Z
    BMC Plant Biol; 2017 Jan; 17(1):24. PubMed ID: 28122507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns.
    Borrell AK; van Oosterom EJ; Mullet JE; George-Jaeggli B; Jordan DR; Klein PE; Hammer GL
    New Phytol; 2014 Aug; 203(3):817-30. PubMed ID: 24898064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress.
    Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M
    Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches.
    Prasad VBR; Govindaraj M; Djanaguiraman M; Djalovic I; Shailani A; Rawat N; Singla-Pareek SL; Pareek A; Prasad PVV
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought.
    Ogbaga CC; Stepien P; Johnson GN
    Physiol Plant; 2014 Oct; 152(2):389-401. PubMed ID: 24666264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress.
    Johnson SM; Lim FL; Finkler A; Fromm H; Slabas AR; Knight MR
    BMC Genomics; 2014 Jun; 15(1):456. PubMed ID: 24916767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response of contrasting tomato genotypes to combined heat and drought stress.
    Nankishore A; Farrell AD
    J Plant Physiol; 2016 Sep; 202():75-82. PubMed ID: 27467552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment.
    Fracasso A; Trindade L; Amaducci S
    J Plant Physiol; 2016 Jan; 190():1-14. PubMed ID: 26624226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the genetic control of natural variation in sorghum photosynthetic response to drought stress.
    Ortiz D; Salas-Fernandez MG
    J Exp Bot; 2022 May; 73(10):3251-3267. PubMed ID: 34791180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Heat Stress with Pre-Existing Drought Exacerbated the Effects on Chlorophyll Fluorescence Rise Kinetics in Four Contrasting Plant Species.
    Zhu L; Wen W; Thorpe MR; Hocart CH; Song X
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiomic analyses of two sorghum cultivars reveals the change of membrane lipids in their responses to water deficit.
    Xu D; Ni Y; Zhang X; Guo Y
    Plant Physiol Biochem; 2022 Apr; 176():44-56. PubMed ID: 35217329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress.
    Sanjari S; Shobbar ZS; Ghanati F; Afshari-Behbahanizadeh S; Farajpour M; Jokar M; Khazaei A; Shahbazi M
    Plant Physiol Biochem; 2021 Feb; 159():383-391. PubMed ID: 33450508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection indices to identify drought-tolerant grain sorghum cultivars.
    Menezes CB; Ticona-Benavente CA; Tardin FD; Cardoso MJ; Bastos EA; Nogueira DW; Portugal AF; Santos CV; Schaffert RE
    Genet Mol Res; 2014 Nov; 13(4):9817-27. PubMed ID: 25501191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Thermography to Confirm Genotypic Variation for Drought Response in Maize.
    Casari RACN; Paiva DS; Silva VNB; Ferreira TMM; Souza Junior MT; Oliveira NG; Kobayashi AK; Molinari HBC; Santos TT; Gomide RL; Magalhães PC; Sousa CAF
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31071964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Omics' approaches in developing combined drought and heat tolerance in food crops.
    Bhardwaj A; Devi P; Chaudhary S; Rani A; Jha UC; Kumar S; Bindumadhava H; Prasad PVV; Sharma KD; Siddique KHM; Nayyar H
    Plant Cell Rep; 2022 Mar; 41(3):699-739. PubMed ID: 34223931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Preflowering Drought Tolerance Strategies of
    Ogden AJ; Abdali S; Engbrecht KM; Zhou M; Handakumbura PP
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physio-morphological, biochemical, and anatomical traits of drought-tolerant and susceptible sorghum cultivars under pre- and post-anthesis drought.
    Akman H; Zhang C; Ejeta G
    Physiol Plant; 2021 Jun; 172(2):912-921. PubMed ID: 33063861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.