These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 35301405)
21. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. BenFarhat-Touzri D; Saadaoui M; Abdelkefi-Mesrati L; Saadaoui I; Azzouz H; Tounsi S J Invertebr Pathol; 2013 Feb; 112(2):142-5. PubMed ID: 23220238 [TBL] [Abstract][Full Text] [Related]
22. Specific binding between Wang Z; Fang L; Zhou Z; Pacheco S; Gómez I; Song F; Soberón M; Zhang J; Bravo A J Biol Chem; 2018 Jul; 293(29):11447-11458. PubMed ID: 29858245 [TBL] [Abstract][Full Text] [Related]
23. Hetero-oligomerization of Bacillus thuringiensis Cry1A proteins enhance binding to the ABCC2 transporter of Spodoptera exigua. Pinos D; Joya N; Herrero S; Ferré J; Hernández-Martínez P Biochem J; 2021 Jul; 478(13):2589-2600. PubMed ID: 34129679 [TBL] [Abstract][Full Text] [Related]
24. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability. Gómez I; Ocelotl J; Sánchez J; Lima C; Martins E; Rosales-Juárez A; Aguilar-Medel S; Abad A; Dong H; Monnerat R; Peña G; Zhang J; Nelson M; Wu G; Bravo A; Soberón M Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097439 [No Abstract] [Full Text] [Related]
25. Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Escriche B; Ferré J; Silva FJ Insect Biochem Mol Biol; 1997 Jul; 27(7):651-6. PubMed ID: 9404010 [TBL] [Abstract][Full Text] [Related]
26. The role of Bacillus thuringiensis Cry1C and Cry1E separate structural domains in the interaction with Spodoptera littoralis gut epithelial cells. Avisar D; Keller M; Gazit E; Prudovsky E; Sneh B; Zilberstein A J Biol Chem; 2004 Apr; 279(16):15779-86. PubMed ID: 14963036 [TBL] [Abstract][Full Text] [Related]
27. Toxicity and receptor binding properties of a Bacillus thuringiensis CryIC toxin active against both lepidoptera and diptera. Abdul-Rauf M; Ellar DJ J Invertebr Pathol; 1999 Jan; 73(1):52-8. PubMed ID: 9878290 [TBL] [Abstract][Full Text] [Related]
28. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome. Jiang J; Huang Y; Shu C; Soberón M; Bravo A; Liu C; Song F; Lai J; Zhang J Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389549 [TBL] [Abstract][Full Text] [Related]
29. Functional characterization of Vip3Aa from Bacillus thuringiensis reveals the contributions of specific domains to its insecticidal activity. Jiang K; Chen Z; Zang Y; Shi Y; Shang C; Jiao X; Cai J; Gao X J Biol Chem; 2023 Mar; 299(3):103000. PubMed ID: 36764522 [TBL] [Abstract][Full Text] [Related]
30. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. Lemes AR; Davolos CC; Legori PC; Fernandes OA; Ferré J; Lemos MV; Desiderio JA PLoS One; 2014; 9(9):e107196. PubMed ID: 25275646 [TBL] [Abstract][Full Text] [Related]
32. Role of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. Martínez-Solís M; Pinos D; Endo H; Portugal L; Sato R; Ferré J; Herrero S; Hernández-Martínez P Insect Biochem Mol Biol; 2018 Oct; 101():47-56. PubMed ID: 30077769 [TBL] [Abstract][Full Text] [Related]
33. Insecticidal activity of Bacillus thuringiensis towards Agrotis exclamationis larvae-A widespread and underestimated pest of the Palearctic zone. Baranek J; Jakubowska M; Gabała E PLoS One; 2023; 18(3):e0283077. PubMed ID: 36928078 [TBL] [Abstract][Full Text] [Related]
34. Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith). Gómez I; Ocelotl J; Sánchez J; Aguilar-Medel S; Peña-Chora G; Lina-Garcia L; Bravo A; Soberón M Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887720 [TBL] [Abstract][Full Text] [Related]
35. Antagonistic Effect of Truncated Fragments of Boonyos P; Trakulnalueamsai C; Rungrod A; Chongthammakun S; Promdonkoy B Protein Pept Lett; 2021; 28(2):131-139. PubMed ID: 32586243 [TBL] [Abstract][Full Text] [Related]
36. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Abdelkefi-Mesrati L; Boukedi H; Dammak-Karray M; Sellami-Boudawara T; Jaoua S; Tounsi S J Invertebr Pathol; 2011 Feb; 106(2):250-4. PubMed ID: 20965198 [TBL] [Abstract][Full Text] [Related]
37. Molecular and Toxicological Characterization of a Bacillus thuringiensis Strain Expressing a Vip3 Protein Highly Toxic to Spodoptera frugiperda (Lepidoptera: Noctuidae). Fernanda Vázquez-Ramírez M; Ibarra JE; Edith Casados-Vázquez L; Eleazar Barboza-Corona J; Rincón-Castro MCD J Econ Entomol; 2022 Oct; 115(5):1455-1463. PubMed ID: 35930375 [TBL] [Abstract][Full Text] [Related]
38. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Loseva O; Ibrahim M; Candas M; Koller CN; Bauer LS; Bulla LA Insect Biochem Mol Biol; 2002 May; 32(5):567-77. PubMed ID: 11891133 [TBL] [Abstract][Full Text] [Related]
39. Structural and Functional Insights into the C-terminal Fragment of Insecticidal Vip3A Toxin of Jiang K; Zhang Y; Chen Z; Wu D; Cai J; Gao X Toxins (Basel); 2020 Jul; 12(7):. PubMed ID: 32635593 [TBL] [Abstract][Full Text] [Related]
40. Involvement of Ji Y; Gao B; Zhao D; Wang Y; Zhang L; Wu H; Xie Y; Shi Q; Guo W J Agric Food Chem; 2024 Jan; 72(4):2321-2333. PubMed ID: 38206329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]