These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35301445)

  • 21. The regulatory role of gibberellin related genes DKGA2ox1 and MIR171f_3 in persimmon dwarfism.
    Dong Y; Ye X; Xiong A; Zhu N; Jiang L; Qu S
    Plant Sci; 2021 Sep; 310():110958. PubMed ID: 34315584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dioecy and chromosomal sex determination are maintained through allopolyploid speciation in the plant genus Mercurialis.
    Toups MA; Vicoso B; Pannell JR
    PLoS Genet; 2022 Jul; 18(7):e1010226. PubMed ID: 35793353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing.
    Luo Y; Zhang X; Luo Z; Zhang Q; Liu J
    BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants.
    Golenberg EM; West NW
    Am J Bot; 2013 Jun; 100(6):1022-37. PubMed ID: 23538873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anatomy and RNA-Seq reveal important gene pathways regulating sex differentiation in a functionally Androdioecious tree, Tapiscia sinensis.
    Xin GL; Liu JQ; Liu J; Ren XL; Du XM; Liu WZ
    BMC Plant Biol; 2019 Dec; 19(1):554. PubMed ID: 31842763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gynoecium development: networks in Arabidopsis and beyond.
    Zúñiga-Mayo VM; Gómez-Felipe A; Herrera-Ubaldo H; de Folter S
    J Exp Bot; 2019 Mar; 70(5):1447-1460. PubMed ID: 30715461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low siring success of females with an acquired male function illustrates the legacy of sexual dimorphism in constraining the breakdown of dioecy.
    Santos Del Blanco L; Tudor E; Pannell JR
    Ecol Lett; 2019 Mar; 22(3):486-497. PubMed ID: 30618173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic distribution of three repetitive DNAs in cultivated hexaploid Diospyros spp. (D. kaki and D. virginiana) and their wild relatives.
    Choi YA; Tao R; Yonemori K; Sugiura A
    Genes Genet Syst; 2003 Aug; 78(4):301-8. PubMed ID: 14532709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Male-biased hermaphrodites in a gynodioecious shrub, Daphne jezoensis.
    Sinclair JP; Kameyama Y; Shibata A; Kudo G
    Plant Biol (Stuttg); 2016 Sep; 18(5):859-67. PubMed ID: 27090773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit.
    Akagi T; Katayama-Ikegami A; Kobayashi S; Sato A; Kono A; Yonemori K
    Plant Physiol; 2012 Feb; 158(2):1089-102. PubMed ID: 22190340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-quality chromosomal genome assembly of Diospyros oleiferaCheng.
    Suo Y; Sun P; Cheng H; Han W; Diao S; Li H; Mai Y; Zhao X; Li F; Fu J
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31944244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short communication: development and characterization of novel transcriptome-derived microsatellites for genetic analysis of persimmon.
    Luo C; Zhang QL; Luo ZR
    Genet Mol Res; 2014 Apr; 13(2):3013-24. PubMed ID: 24782136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation.
    Akagi T; Ikegami A; Yonemori K
    Planta; 2010 Oct; 232(5):1045-59. PubMed ID: 20690029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MYB transcription factor gene involved in sex determination in Asparagus officinalis.
    Murase K; Shigenobu S; Fujii S; Ueda K; Murata T; Sakamoto A; Wada Y; Yamaguchi K; Osakabe Y; Osakabe K; Kanno A; Ozaki Y; Takayama S
    Genes Cells; 2017 Jan; 22(1):115-123. PubMed ID: 27869347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomics-based discrimination of 2n gamete formation mechanisms in polyploids: a case study in nonaploid Diospyros kaki 'Akiou'.
    Sun P; Nishiyama S; Asakuma H; Voorrips RE; Fu J; Tao R
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-dependent gender modification in Lilium apertum (Liliaceae): does this species exhibit gender diphasy?
    Zhang ZQ; Zhu XF; Sun H; Yang YP; Barrett SC
    Ann Bot; 2014 Sep; 114(3):441-53. PubMed ID: 25062885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathways to sex determination in plants: how many roads lead to Rome?
    Feng G; Sanderson BJ; Keefover-Ring K; Liu J; Ma T; Yin T; Smart LB; DiFazio SP; Olson MS
    Curr Opin Plant Biol; 2020 Apr; 54():61-68. PubMed ID: 32106015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms.
    Torices R; Méndez M; Gómez JM
    New Phytol; 2011 Apr; 190(1):234-248. PubMed ID: 21219336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of sex-biased gene expression in a dioecious plant.
    Zemp N; Tavares R; Muyle A; Charlesworth D; Marais GA; Widmer A
    Nat Plants; 2016 Nov; 2(11):16168. PubMed ID: 27808231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenetic analysis of sexual systems in Inuleae (Asteraceae).
    Torices R; Anderberg AA
    Am J Bot; 2009 May; 96(5):1011-9. PubMed ID: 21628252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.