These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35301473)

  • 1. Reversible C-C bond formation using palladium catalysis.
    Marchese AD; Mirabi B; Johnson CE; Lautens M
    Nat Chem; 2022 Apr; 14(4):398-406. PubMed ID: 35301473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium-catalyzed carboiodination of alkenes: carbon-carbon bond formation with retention of reactive functionality.
    Newman SG; Lautens M
    J Am Chem Soc; 2011 Feb; 133(6):1778-80. PubMed ID: 21265523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Quest for Palladium-Catalysed Alkyl-Nitrogen Bond Formation.
    Muñiz K; Martínez C; Iglesias Á
    Chem Rec; 2016 Dec; 16(6):2561-2572. PubMed ID: 27424485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key mechanistic features of enantioselective C-H bond activation reactions catalyzed by [(chiral mono-N-protected amino acid)-Pd(II)] complexes.
    Musaev DG; Kaledin A; Shi BF; Yu JQ
    J Am Chem Soc; 2012 Jan; 134(3):1690-8. PubMed ID: 22148424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: how fluorine tips the scales.
    Clot E; Eisenstein O; Jasim N; Macgregor SA; McGrady JE; Perutz RN
    Acc Chem Res; 2011 May; 44(5):333-48. PubMed ID: 21410234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triamidoamine-Supported Zirconium Compounds in Main Group Bond-Formation Catalysis.
    Waterman R
    Acc Chem Res; 2019 Aug; 52(8):2361-2369. PubMed ID: 31386336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel-catalysed Suzuki-Miyaura coupling of amides.
    Weires NA; Baker EL; Garg NK
    Nat Chem; 2016 Jan; 8(1):75-9. PubMed ID: 26673267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The organometallic fluorine chemistry of palladium and rhodium: studies toward aromatic fluorination.
    Grushin VV
    Acc Chem Res; 2010 Jan; 43(1):160-71. PubMed ID: 19788304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.
    McMahon CM; Alexanian EJ
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5974-7. PubMed ID: 24757051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imparting catalyst control upon classical palladium-catalyzed alkenyl C-H bond functionalization reactions.
    Sigman MS; Werner EW
    Acc Chem Res; 2012 Jun; 45(6):874-84. PubMed ID: 22111756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the reactions of a methionine- and histidine-containing tetrapeptide with different Pd(II) and Pt(II) complexes: selective cleavage of the amide bond by platination of the peptide and steric modification of the catalyst.
    Rajković S; Zivković MD; Kállay C; Sóvágó I; Djuran MI
    Dalton Trans; 2009 Oct; (39):8370-7. PubMed ID: 19789790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C-H Activation of Aryl and Alkyl Groups.
    Yang YF; Hong X; Yu JQ; Houk KN
    Acc Chem Res; 2017 Nov; 50(11):2853-2860. PubMed ID: 29115826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-nature catalysis: developing C-C bond formations catalyzed by late transition metals in air and water.
    Li CJ
    Acc Chem Res; 2002 Jul; 35(7):533-8. PubMed ID: 12118992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Catalyzed Approaches toward the Oxindole Core.
    Marchese AD; Larin EM; Mirabi B; Lautens M
    Acc Chem Res; 2020 Aug; 53(8):1605-1619. PubMed ID: 32706589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of diverse carbon-heteroatom and carbon-carbon bonds via palladium(II)-catalysed β-X elimination.
    Tran VT; Gurak JA; Yang KS; Engle KM
    Nat Chem; 2018 Nov; 10(11):1126-1133. PubMed ID: 30127512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium-Catalysed C-H Bond Zincation of Arenes: Scope, Mechanism, and the Role of Heterometallic Intermediates.
    Garçon M; Mun NW; White AJP; Crimmin MR
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):6145-6153. PubMed ID: 33275830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of the mechanism of palladium(II) acetate-catalyzed oxidative Heck coupling of electron-deficient arenes with alkenes: effects of the pyridine-type ancillary ligand and origins of the meta-regioselectivity.
    Zhang S; Shi L; Ding Y
    J Am Chem Soc; 2011 Dec; 133(50):20218-29. PubMed ID: 22112165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.