These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35302366)

  • 1. Improved Copper Circularity as a Result of Increased Material Efficiency in the U.S. Housing Stock.
    Wang T; Berrill P; Zimmerman JB; Rao ND; Min J; Hertwich EG
    Environ Sci Technol; 2022 Apr; 56(7):4565-4577. PubMed ID: 35302366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings.
    Petersdorff C; Boermans T; Harnisch J
    Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 120 Years of U.S. Residential Housing Stock and Floor Space.
    Moura MC; Smith SJ; Belzer DB
    PLoS One; 2015; 10(8):e0134135. PubMed ID: 26263391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle based analysis of demands and emissions for residential water-using appliances.
    Lee M; Tansel B
    J Environ Manage; 2012 Jun; 101():75-81. PubMed ID: 22406847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review analysis of COVID-19 impact on electricity demand for residential buildings.
    Krarti M; Aldubyan M
    Renew Sustain Energy Rev; 2021 Jun; 143():110888. PubMed ID: 36310544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental Impact of Buildings--What Matters?
    Heeren N; Mutel CL; Steubing B; Ostermeyer Y; Wallbaum H; Hellweg S
    Environ Sci Technol; 2015 Aug; 49(16):9832-41. PubMed ID: 26176213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Framework for Modelling Consumption-Based Energy Demand and Emission Pathways.
    Mastrucci A; Min J; Usubiaga-Liaño A; Rao ND
    Environ Sci Technol; 2020 Feb; 54(3):1799-1807. PubMed ID: 31909605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Geospatial Modeling of the Building Stock To Project Urban Energy Demand.
    Breunig HM; Huntington T; Jin L; Robinson A; Scown CD
    Environ Sci Technol; 2018 Jul; 52(14):7604-7613. PubMed ID: 29944351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking Housing Policy, Housing Typology, and Residential Energy Demand in the United States.
    Berrill P; Gillingham KT; Hertwich EG
    Environ Sci Technol; 2021 Feb; 55(4):2224-2233. PubMed ID: 33508933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Energy and Water Savings in the U.S. Residential Sector.
    Chini CM; Schreiber KL; Barker ZA; Stillwell AS
    Environ Sci Technol; 2016 Sep; 50(17):9003-12. PubMed ID: 27501020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of water as raw material on material circularity - A case study from the Hungarian food sector.
    H-Hargitai R; Somogyi V
    Heliyon; 2023 Jul; 9(7):e17587. PubMed ID: 37483782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodology to assess the circularity in building construction and refurbishment activities.
    González A; Sendra C; Herena A; Rosquillas M; Vaz D
    Resour Conserv Recycl Adv; 2021 Dec; 12():None. PubMed ID: 34977854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.
    Nishijima D
    J Environ Manage; 2016 Oct; 181():582-589. PubMed ID: 27423771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy efficiency to reduce residential electricity and natural gas use under climate change.
    Reyna JL; Chester MV
    Nat Commun; 2017 May; 8():14916. PubMed ID: 28504255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars.
    Pauliuk S; Heeren N; Berrill P; Fishman T; Nistad A; Tu Q; Wolfram P; Hertwich EG
    Nat Commun; 2021 Aug; 12(1):5097. PubMed ID: 34429412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental benefit analysis of strategies for potable water savings in residential buildings.
    Marinoski AK; Rupp RF; Ghisi E
    J Environ Manage; 2018 Jan; 206():28-39. PubMed ID: 29055847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative assessment of two circularity indicators for the case of reusable versus single-use secondary packages for fresh foods in Spain.
    Sazdovski I; Batlle-Bayer L; Bala A; Margallo M; Azarkamand S; Aldaco R; Fullana-I-Palmer P
    Heliyon; 2024 Mar; 10(6):e27922. PubMed ID: 38509916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In search of standards to support circularity in product policies: A systematic approach.
    Tecchio P; McAlister C; Mathieux F; Ardente F
    J Clean Prod; 2017 Dec; 168():1533-1546. PubMed ID: 29200663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing China's potential for reducing primary copper demand and associated environmental impacts in the context of energy transition and "Zero waste" policies.
    Dong D; Tukker A; Steubing B; van Oers L; Rechberger H; Alonso Aguilar-Hernandez G; Li H; Van der Voet E
    Waste Manag; 2022 May; 144():454-467. PubMed ID: 35462290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.