BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35302367)

  • 21. PRO-seq: Precise Mapping of Engaged RNA Pol II at Single-Nucleotide Resolution.
    Mimoso CA; Goldman SR
    Curr Protoc; 2023 Dec; 3(12):e961. PubMed ID: 38149731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct and concurrent pathways of Pol II- and Pol IV-dependent siRNA biogenesis at a repetitive trans-silencer locus in Arabidopsis thaliana.
    Sasaki T; Lee TF; Liao WW; Naumann U; Liao JL; Eun C; Huang YY; Fu JL; Chen PY; Meyers BC; Matzke AJ; Matzke M
    Plant J; 2014 Jul; 79(1):127-38. PubMed ID: 24798377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. a
    Shu X; Huang C; Li T; Cao J; Liu J
    Fundam Res; 2023 Sep; 3(5):657-664. PubMed ID: 38933292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of siRNA Precursors Generated by RNA Polymerase IV and RNA-Dependent RNA Polymerase 2 in Arabidopsis.
    Blevins T; Podicheti R; Pikaard CS
    Methods Mol Biol; 2019; 1933():33-48. PubMed ID: 30945177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GRID-seq for comprehensive analysis of global RNA-chromatin interactions.
    Zhou B; Li X; Luo D; Lim DH; Zhou Y; Fu XD
    Nat Protoc; 2019 Jul; 14(7):2036-2068. PubMed ID: 31175345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MINCE-Seq: Mapping In Vivo Nascent Chromatin with EdU and Sequencing.
    Ramachandran S; Henikoff S
    Methods Mol Biol; 2018; 1832():159-168. PubMed ID: 30073526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional control regions: nucleotide sequence requirements for initiation by RNA polymerase II and III.
    Shenk T
    Curr Top Microbiol Immunol; 1981; 93():25-46. PubMed ID: 7026181
    [No Abstract]   [Full Text] [Related]  

  • 28. Transcription Restart Establishes Chromatin Accessibility after DNA Replication.
    Stewart-Morgan KR; Reverón-Gómez N; Groth A
    Mol Cell; 2019 Jul; 75(2):284-297.e6. PubMed ID: 31126739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromatin remodeling by RNA polymerases.
    Studitsky VM; Walter W; Kireeva M; Kashlev M; Felsenfeld G
    Trends Biochem Sci; 2004 Mar; 29(3):127-35. PubMed ID: 15003270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription.
    Schramke V; Sheedy DM; Denli AM; Bonila C; Ekwall K; Hannon GJ; Allshire RC
    Nature; 2005 Jun; 435(7046):1275-9. PubMed ID: 15965464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide analysis of distribution of RNA polymerase II isoforms using ChIP-seq.
    de Lorenzo L
    Methods Mol Biol; 2015; 1255():209-21. PubMed ID: 25487216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq.
    Pal S; Gupta R; Davuluri RV
    Methods Mol Biol; 2014; 1176():1-9. PubMed ID: 25030914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local Changes in Chromatin Accessibility and Transcriptional Networks Underlying the Nitrate Response in Arabidopsis Roots.
    Alvarez JM; Moyano TC; Zhang T; Gras DE; Herrera FJ; Araus V; O'Brien JA; Carrillo L; Medina J; Vicente-Carbajosa J; Jiang J; Gutiérrez RA
    Mol Plant; 2019 Dec; 12(12):1545-1560. PubMed ID: 31526863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases.
    Mote J; Reines D
    J Biol Chem; 1998 Jul; 273(27):16843-52. PubMed ID: 9642244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Detailed Protocol for Subcellular RNA Sequencing (subRNA-seq).
    Mayer A; Churchman LS
    Curr Protoc Mol Biol; 2017 Oct; 120():4.29.1-4.29.18. PubMed ID: 28967997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quality control system for profiles obtained by ChIP sequencing.
    Mendoza-Parra MA; Van Gool W; Mohamed Saleem MA; Ceschin DG; Gronemeyer H
    Nucleic Acids Res; 2013 Nov; 41(21):e196. PubMed ID: 24038469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging.
    Weiner A; Hughes A; Yassour M; Rando OJ; Friedman N
    Genome Res; 2010 Jan; 20(1):90-100. PubMed ID: 19846608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus.
    Habjan M; Penski N; Spiegel M; Weber F
    J Gen Virol; 2008 Sep; 89(Pt 9):2157-2166. PubMed ID: 18753225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq.
    Yan B; Tzertzinis G; Schildkraut I; Ettwiller L
    Genome Res; 2022 Jan; 32(1):162-174. PubMed ID: 34815308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs.
    Nuthikattu S; McCue AD; Panda K; Fultz D; DeFraia C; Thomas EN; Slotkin RK
    Plant Physiol; 2013 May; 162(1):116-31. PubMed ID: 23542151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.