These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35302560)

  • 1. Smart ultra-stable foams stabilized using cellulose nanocrystal (CNC) gels
    Guo K; Wei P; Xie Y; Huang X
    Chem Commun (Camb); 2022 Apr; 58(30):4723-4726. PubMed ID: 35302560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose.
    Hu Z; Xu R; Cranston ED; Pelton RH
    Biomacromolecules; 2016 Dec; 17(12):4095-4099. PubMed ID: 27936719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid Foam Stabilized by a CO
    Wei P; Guo K; Xie Y; Huang X
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37134-37148. PubMed ID: 35917120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-modification of Cellulose Nanocrystal Aerogels with Thiol-Ene Click Chemistry.
    Aalbers GJW; Boott CE; D'Acierno F; Lewis L; Ho J; Michal CA; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2019 Jul; 20(7):2779-2785. PubMed ID: 31244013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams.
    Borkotoky SS; Chakraborty G; Katiyar V
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1518-1531. PubMed ID: 29981330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127.
    Kushan E; Senses E
    ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films.
    Zhang L; Zhao J; Zhang Y; Li F; Jiao X; Li Q
    Int J Biol Macromol; 2021 Dec; 192():444-451. PubMed ID: 34606791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals.
    Wang Z; Yuan Y; Hu J; Yang J; Feng F; Yu Y; Liu P; Men Y; Zhang J
    Carbohydr Polym; 2020 Oct; 245():116459. PubMed ID: 32718601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds.
    Osorio DA; Lee BEJ; Kwiecien JM; Wang X; Shahid I; Hurley AL; Cranston ED; Grandfield K
    Acta Biomater; 2019 Mar; 87():152-165. PubMed ID: 30710708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting.
    Jaafar Z; Quelennec B; Moreau C; Lourdin D; Maigret JE; Pontoire B; D'orlando A; Coradin T; Duchemin B; Fernandes FM; Cathala B
    Carbohydr Polym; 2020 Nov; 247():116642. PubMed ID: 32829789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions.
    Xiang W; Preisig N; Ketola A; Tardy BL; Bai L; Ketoja JA; Stubenrauch C; Rojas OJ
    Biomacromolecules; 2019 Dec; 20(12):4361-4369. PubMed ID: 31478654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Apr; 16(16):3981-3990. PubMed ID: 32250379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional cellulose nanocrystal structural colored film with good flexibility and water-resistance.
    Huang Y; Chen G; Liang Q; Yang Z; Shen H
    Int J Biol Macromol; 2020 Apr; 149():819-825. PubMed ID: 31991208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gelation Kinetics and Network Structure of Cellulose Nanocrystals in Aqueous Solution.
    Peddireddy KR; Capron I; Nicolai T; Benyahia L
    Biomacromolecules; 2016 Oct; 17(10):3298-3304. PubMed ID: 27584941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous foams stabilized by chitin nanocrystals.
    Tzoumaki MV; Karefyllakis D; Moschakis T; Biliaderis CG; Scholten E
    Soft Matter; 2015 Aug; 11(31):6245-53. PubMed ID: 26154562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of protein-cellulose nanocrystal interactions in the stabilization of emulsion.
    Pinďáková L; Kašpárková V; Bordes R
    J Colloid Interface Sci; 2019 Dec; 557():196-206. PubMed ID: 31521969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-layered cellulose nanocrystal system for CD44 receptor-positive tumor-targeted anticancer drug delivery.
    Seo JH; Lee SY; Hwang C; Yang M; Lee J; Lee SH; Cho HJ
    Int J Biol Macromol; 2020 Nov; 162():798-809. PubMed ID: 32585268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of environmental humidity-responsive iridescent films with cellulose nanocrystal/polyols.
    Meng Y; Cao Y; Ji H; Chen J; He Z; Long Z; Dong C
    Carbohydr Polym; 2020 Jul; 240():116281. PubMed ID: 32475565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.