These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35302739)

  • 1. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH.
    Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G
    ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores.
    Cao C; Cirauqui N; Marcaida MJ; Buglakova E; Duperrex A; Radenovic A; Dal Peraro M
    Nat Commun; 2019 Oct; 10(1):4918. PubMed ID: 31664022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore.
    Hu F; Angelov B; Li S; Li N; Lin X; Zou A
    Chembiochem; 2020 Sep; 21(17):2467-2473. PubMed ID: 32274877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore.
    Ouldali H; Sarthak K; Ensslen T; Piguet F; Manivet P; Pelta J; Behrends JC; Aksimentiev A; Oukhaled A
    Nat Biotechnol; 2020 Feb; 38(2):176-181. PubMed ID: 31844293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative understanding of pH- and salt-mediated conformational folding of histidine-containing, β-hairpin-like peptides, through single-molecule probing with protein nanopores.
    Mereuta L; Asandei A; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13242-56. PubMed ID: 25069106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Free Expression of
    Fujita S; Kawamura I; Kawano R
    ACS Nano; 2023 Feb; 17(4):3358-3367. PubMed ID: 36731872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores.
    Huang G; Willems K; Soskine M; Wloka C; Maglia G
    Nat Commun; 2017 Oct; 8(1):935. PubMed ID: 29038539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote Activation of a Nanopore for High-Performance Genetic Detection Using a pH Taxis-Mimicking Mechanism.
    Wang Y; Tian K; Du X; Shi RC; Gu LQ
    Anal Chem; 2017 Dec; 89(24):13039-13043. PubMed ID: 29183111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore.
    Cao C; Ying YL; Hu ZL; Liao DF; Tian H; Long YT
    Nat Nanotechnol; 2016 Aug; 11(8):713-8. PubMed ID: 27111839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure.
    Liao DF; Cao C; Ying YL; Long YT
    Small; 2018 May; 14(18):e1704520. PubMed ID: 29603609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution.
    Huang G; Voet A; Maglia G
    Nat Commun; 2019 Feb; 10(1):835. PubMed ID: 30783102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single polypeptide detection using a translocon EXP2 nanopore.
    Miyagi M; Takiguchi S; Hakamada K; Yohda M; Kawano R
    Proteomics; 2022 Mar; 22(5-6):e2100070. PubMed ID: 34411416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Manipulation of the Internal Hydrophobicity of FraC Nanopores Augments Peptide Capture and Recognition.
    Lucas FLR; Sarthak K; Lenting EM; Coltan D; van der Heide NJ; Versloot RCA; Aksimentiev A; Maglia G
    ACS Nano; 2021 Jun; 15(6):9600-9613. PubMed ID: 34060809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.
    Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Genetic Encoding of Unnatural Amino Acids in a Protein Nanopore.
    Wu XY; Li MY; Yang SJ; Jiang J; Ying YL; Chen PR; Long YT
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202300582. PubMed ID: 37195576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective.
    Wiswedel R; Bui ATN; Kim J; Lee MK
    Biosensors (Basel); 2024 Jul; 14(7):. PubMed ID: 39056622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On possible trypsin-induced biases in peptides analysis with aerolysin nanopore.
    Afshar Bakshloo M; Yahiaoui S; Ouldali H; Pastoriza-Gallego M; Piguet F; Oukhaled A
    Proteomics; 2022 Jun; 22(11-12):e2100056. PubMed ID: 35357771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-Osmotic Vortices Promote the Capture of Folded Proteins by PlyAB Nanopores.
    Huang G; Willems K; Bartelds M; van Dorpe P; Soskine M; Maglia G
    Nano Lett; 2020 May; 20(5):3819-3827. PubMed ID: 32271587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.