These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35302743)
1. Generation of Tough, Stiff Polylactide Nanocomposites through the Anstey A; Tuccitto AV; Lee PC; Park CB ACS Appl Mater Interfaces; 2022 Mar; 14(12):14422-14434. PubMed ID: 35302743 [TBL] [Abstract][Full Text] [Related]
2. Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE) Blends: Effects of Annealing and Reactive Compatibilizer. Wang S; Pang S; Pan L; Xu N; Li T Polymers (Basel); 2016 Dec; 8(12):. PubMed ID: 30974700 [TBL] [Abstract][Full Text] [Related]
3. Highly Tough Yet Stiff, Transparent, and Recyclable PMMA Nanocomposites Incorporating TPU Nanofibril Networks with High Thermal Stability and Strong Interfacial Adhesion. Rahman SS; Mahmud MB; Omranpour H; Salehi A; Monfared AR; Park CB ACS Appl Mater Interfaces; 2024 Aug; 16(32):42687-42703. PubMed ID: 39082691 [TBL] [Abstract][Full Text] [Related]
4. Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging. Tejada-Oliveros R; Balart R; Ivorra-Martinez J; Gomez-Caturla J; Montanes N; Quiles-Carrillo L Molecules; 2021 Jan; 26(1):. PubMed ID: 33466389 [TBL] [Abstract][Full Text] [Related]
5. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Li Y; Shimizu H Macromol Biosci; 2007 Jul; 7(7):921-8. PubMed ID: 17578835 [TBL] [Abstract][Full Text] [Related]
6. In Situ Formation of Microfibrillar Crystalline Superstructure: Achieving High-Performance Polylactide. Li C; Jiang T; Wang J; Wu H; Guo S; Zhang X; Li J; Shen J; Chen R; Xiong Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):25818-25829. PubMed ID: 28708370 [TBL] [Abstract][Full Text] [Related]
7. Enhancing Mechanical Performance of High-Density Polyethylene at Different Environmental Conditions with Outstanding Foamability through In-Situ Rubber Nanofibrillation: Exploring the Impact of Interface Modification. Kheradmandkeysomi M; Salehi A; Jalali A; Omranpour H; Tafreshi OA; Naguib HE; Park CB ACS Appl Mater Interfaces; 2024 Jun; 16(22):29291-29304. PubMed ID: 38776211 [TBL] [Abstract][Full Text] [Related]
8. Novel blends of polylactide with ethylene glycol derivatives of POSS. Zubrowska A; Piorkowska E; Kowalewska A; Cichorek M Colloid Polym Sci; 2015; 293(1):23-33. PubMed ID: 25598571 [TBL] [Abstract][Full Text] [Related]
9. Synergism Effect between Nanofibrillation and Interface Tuning on the Stiffness-Toughness Balance of Rubber-Toughened Polymer Nanocomposites: A Multiscale Analysis. Zeidi M; Park CB; Il Kim C ACS Appl Mater Interfaces; 2023 May; 15(20):24948-24967. PubMed ID: 37172315 [TBL] [Abstract][Full Text] [Related]
11. Toughening Polylactic Acid by a Biobased Poly(Butylene 2,5-Furandicarboxylate)- Chen C; Tian Y; Li F; Hu H; Wang K; Kong Z; Ying WB; Zhang R; Zhu J Biomacromolecules; 2021 Feb; 22(2):374-385. PubMed ID: 33356173 [TBL] [Abstract][Full Text] [Related]
12. Toughening Modification of Polylactic Acid by Thermoplastic Silicone Polyurethane Elastomer. Sun M; Huang S; Yu M; Han K Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208303 [TBL] [Abstract][Full Text] [Related]
13. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Liu GC; He YS; Zeng JB; Li QT; Wang YZ Biomacromolecules; 2014 Nov; 15(11):4260-71. PubMed ID: 25287757 [TBL] [Abstract][Full Text] [Related]
15. Unprecedented access to strong and ductile poly(lactic acid) by introducing In Situ Nanofibrillar Poly(butylene succinate) for green packaging. Xie L; Xu H; Niu B; Ji X; Chen J; Li ZM; Hsiao BS; Zhong GJ Biomacromolecules; 2014 Nov; 15(11):4054-64. PubMed ID: 25245861 [TBL] [Abstract][Full Text] [Related]
16. Poly (lactic acid) blends: Processing, properties and applications. Nofar M; Sacligil D; Carreau PJ; Kamal MR; Heuzey MC Int J Biol Macromol; 2019 Mar; 125():307-360. PubMed ID: 30528997 [TBL] [Abstract][Full Text] [Related]
17. Improvement of the strength and toughness of biodegradable polylactide/silica nanocomposites by uniaxial pre-stretching. Chen Y; Han L; Zhang H; Dong L Int J Biol Macromol; 2021 Nov; 190():198-205. PubMed ID: 34492242 [TBL] [Abstract][Full Text] [Related]
18. Copolyester toughened poly(lactic acid) biodegradable material prepared by Zhao X; Li P; Mo F; Zhang Y; Huang Z; Yu J; Zhou L; Bi S; Peng S RSC Adv; 2024 Apr; 14(16):11027-11036. PubMed ID: 38586443 [TBL] [Abstract][Full Text] [Related]
19. Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane. Aoki D; Lossada F; Hoenders D; Ajiro H; Walther A Biomacromolecules; 2022 Apr; 23(4):1693-1702. PubMed ID: 35362317 [TBL] [Abstract][Full Text] [Related]
20. Improving the Continuous Microcellular Extrusion Foaming Ability with Supercritical CO Jiang R; Liu T; Xu Z; Park CB; Zhao L Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31810168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]