BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35302756)

  • 1. Bioorthogonal Chemical Epigenetic Modifiers Enable Dose-Dependent CRISPR Targeted Gene Activation in Mammalian Cells.
    Lu D; Foley CA; Birla SV; Hepperla AJ; Simon JM; James LI; Hathaway NA
    ACS Synth Biol; 2022 Apr; 11(4):1397-1407. PubMed ID: 35302756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery.
    Chiarella AM; Butler KV; Gryder BE; Lu D; Wang TA; Yu X; Pomella S; Khan J; Jin J; Hathaway NA
    Nat Biotechnol; 2020 Jan; 38(1):50-55. PubMed ID: 31712774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Gene Repression Using Novel Bifunctional Molecules to Harness Endogenous Histone Deacetylation Activity.
    Butler KV; Chiarella AM; Jin J; Hathaway NA
    ACS Synth Biol; 2018 Jan; 7(1):38-45. PubMed ID: 29073761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and Orthogonal Transcription Regulation by Chemically Inducible Artificial Transcription Factors.
    Nomura W; Matsumoto D; Sugii T; Kobayakawa T; Tamamura H
    Biochemistry; 2018 Nov; 57(45):6452-6459. PubMed ID: 30366497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 in epigenetics studies of health and disease.
    Sar P; Dalai S
    Prog Mol Biol Transl Sci; 2021; 181():309-343. PubMed ID: 34127198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation.
    Mahas A; Neal Stewart C; Mahfouz MM
    Biotechnol Adv; 2018; 36(1):295-310. PubMed ID: 29197619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Methylation Editing by CRISPR-guided Excision of 5-Methylcytosine.
    Devesa-Guerra I; Morales-Ruiz T; Pérez-Roldán J; Parrilla-Doblas JT; Dorado-León M; García-Ortiz MV; Ariza RR; Roldán-Arjona T
    J Mol Biol; 2020 Mar; 432(7):2204-2216. PubMed ID: 32087201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator.
    Selma S; Bernabé-Orts JM; Vazquez-Vilar M; Diego-Martin B; Ajenjo M; Garcia-Carpintero V; Granell A; Orzaez D
    Plant Biotechnol J; 2019 Sep; 17(9):1703-1705. PubMed ID: 31034138
    [No Abstract]   [Full Text] [Related]  

  • 11. Beyond Native Cas9: Manipulating Genomic Information and Function.
    Mitsunobu H; Teramoto J; Nishida K; Kondo A
    Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximal binding of dCas9 at a DNA double strand break stimulates homology-directed repair as a local inhibitor of classical non-homologous end joining.
    Feng YL; Liu SC; Chen RD; Sun XN; Xiao JJ; Xiang JF; Xie AY
    Nucleic Acids Res; 2023 Apr; 51(6):2740-2758. PubMed ID: 36864759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing Genome Editing Efficiency of Cas9 Nucleases by the Simultaneous Use of Transcriptional Activators and Histone Acetyltransferase Activator.
    Liu J; Li B; Yang L; Ren N; Xu M; Huang Q
    CRISPR J; 2022 Dec; 5(6):854-867. PubMed ID: 36374245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concatenated Coiled-Coil Tag for Highly Efficient, Small Molecule-Inducible Upregulation of Endogenous Mammalian Genes.
    Lebar T; Jerala R
    Methods Mol Biol; 2023; 2577():197-209. PubMed ID: 36173575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of Gene Regulation by Genome Editing.
    Yeo NC; Church GM
    Methods Mol Biol; 2023; 2594():59-68. PubMed ID: 36264488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy.
    Maroufi F; Maali A; Abdollahpour-Alitappeh M; Ahmadi MH; Azad M
    Epigenomics; 2020 Oct; 12(20):1845-1859. PubMed ID: 33185489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editing of DNA Methylation Patterns Using CRISPR-Based Tools.
    Smith J; Banerjee R; Weeks RJ; Chatterjee A
    Methods Mol Biol; 2022; 2458():63-74. PubMed ID: 35103962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.