These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35302939)

  • 1. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer.
    Chen Z; Guo Q; Li T; Yan Y; Jiang D
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive neural fault-tolerant prescribed performance control of a rehabilitation exoskeleton for lower limb passive training.
    Yang Y; Huang D; Ma L; Liu X; Li Y
    ISA Trans; 2024 Aug; 151():143-152. PubMed ID: 38853110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing a robust controller for a lower limb exoskeleton to treat an individual with crouch gait pattern in the presence of actuator saturation.
    Khamar M; Edrisi M; Forghany S
    ISA Trans; 2022 Jul; 126():513-532. PubMed ID: 34479722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbance rejection model predictive control of lower limb rehabilitation exoskeleton.
    Jin X; Guo J
    Sci Rep; 2023 Nov; 13(1):19463. PubMed ID: 37945649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
    Wang Y; Wang H; Tian Y
    ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Modular Neural Control for Online Gait Synchronization and Adaptation of an Assistive Lower-Limb Exoskeleton.
    Srisuchinnawong A; Akkawutvanich C; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12449-12458. PubMed ID: 37027271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control.
    Liang C; Hsiao T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton.
    Calle-Siguencia J; Callejas-Cuervo M; García-Reino S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller.
    Narayan J; Abbas M; Dwivedy SK
    Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-in-the-Loop Cooperative Control of a Walking Exoskeleton for Following Time-Variable Human Intention.
    Li Z; Zhang T; Huang P; Li G
    IEEE Trans Cybern; 2024 Apr; 54(4):2142-2154. PubMed ID: 36279358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network.
    Su B; Gutierrez-Farewik EM
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force.
    Ren J; Wang A; Li H; Yue X; Meng L
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot.
    Qin L; Ji H; Chen M; Wang K
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting.
    Xia Y; Wei W; Lin X; Li J
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.