BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35302963)

  • 1. Understanding Artificial Intelligence and Predictive Analytics: A Clinically Focused Review of Machine Learning Techniques.
    Cho B; Geng E; Arvind V; Valliani AA; Tang JE; Schwartz J; Dominy C; Cho SK; Kim JS
    JBJS Rev; 2022 Mar; 10(3):. PubMed ID: 35302963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editorial Commentary: Machine Learning in Orthopaedics: Venturing Into the Valley of Despair.
    Wellington IJ; Cote MP
    Arthroscopy; 2022 Sep; 38(9):2767-2768. PubMed ID: 36064282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the potential of artificial intelligence in orthopaedic surgery.
    Powling AS; Lisacek-Kiosoglous AB; Fontalis A; Mazomenos E; Haddad FS
    Br J Hosp Med (Lond); 2023 Dec; 84(12):1-5. PubMed ID: 38153019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care?
    Bini SA
    J Arthroplasty; 2018 Aug; 33(8):2358-2361. PubMed ID: 29656964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence and machine learning: an introduction for orthopaedic surgeons.
    Martin RK; Ley C; Pareek A; Groll A; Tischer T; Seil R
    Knee Surg Sports Traumatol Arthrosc; 2022 Feb; 30(2):361-364. PubMed ID: 34528133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development and deployment of machine learning models.
    Pruneski JA; Williams RJ; Nwachukwu BU; Ramkumar PN; Kiapour AM; Martin RK; Karlsson J; Pareek A
    Knee Surg Sports Traumatol Arthrosc; 2022 Dec; 30(12):3917-3923. PubMed ID: 36083354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligence for the Orthopaedic Surgeon: An Overview of Potential Benefits, Limitations, and Clinical Applications.
    Makhni EC; Makhni S; Ramkumar PN
    J Am Acad Orthop Surg; 2021 Mar; 29(6):235-243. PubMed ID: 33323681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AOA Critical Issues Symposium: Shaping the Impact of Artificial Intelligence within Orthopaedic Surgery.
    Patel AA; Schwab JH; Amanatullah DF; Divi SN
    J Bone Joint Surg Am; 2023 Sep; 105(18):1475-1479. PubMed ID: 37172106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence in spine care: current applications and future utility.
    Hornung AL; Hornung CM; Mallow GM; Barajas JN; Rush A; Sayari AJ; Galbusera F; Wilke HJ; Colman M; Phillips FM; An HS; Samartzis D
    Eur Spine J; 2022 Aug; 31(8):2057-2081. PubMed ID: 35347425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application and prospect of machine learning in orthopaedic trauma].
    Tian C; Chen X; Zhu H; Qin S; Shi L; Rui Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Dec; 37(12):1562-1568. PubMed ID: 38130202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretation and reporting of predictive or diagnostic machine-learning research in Trauma & Orthopaedics.
    Farrow L; Zhong M; Ashcroft GP; Anderson L; Meek RMD
    Bone Joint J; 2021 Dec; 103-B(12):1754-1758. PubMed ID: 34847720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of machine learning and artificial intelligence within pediatric critical care.
    Shah N; Arshad A; Mazer MB; Carroll CL; Shein SL; Remy KE
    Pediatr Res; 2023 Jan; 93(2):405-412. PubMed ID: 36376506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Must-have Qualities of Clinical Research on Artificial Intelligence and Machine Learning.
    Koçak B; Cuocolo R; dos Santos DP; Stanzione A; Ugga L
    Balkan Med J; 2023 Jan; 40(1):3-12. PubMed ID: 36578657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering musculoskeletal artificial intelligence for clinical applications: how do I get started?
    Mutasa S; Yi PH
    Skeletal Radiol; 2022 Feb; 51(2):271-278. PubMed ID: 34191083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sports Medicine and Artificial Intelligence: A Primer.
    Ramkumar PN; Luu BC; Haeberle HS; Karnuta JM; Nwachukwu BU; Williams RJ
    Am J Sports Med; 2022 Mar; 50(4):1166-1174. PubMed ID: 33900125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence and Machine Learning: A New Disruptive Force in Orthopaedics.
    Poduval M; Ghose A; Manchanda S; Bagaria V; Sinha A
    Indian J Orthop; 2020 Apr; 54(2):109-122. PubMed ID: 32257027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Intelligence in Modern Orthopaedics: Current and Future Applications.
    Hui AT; Alvandi LM; Eleswarapu AS; Fornari ED
    JBJS Rev; 2022 Oct; 10(10):. PubMed ID: 36191085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurology education in the era of artificial intelligence.
    Kedar S; Khazanchi D
    Curr Opin Neurol; 2023 Feb; 36(1):51-58. PubMed ID: 36367213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning for the Orthopaedic Surgeon: Uses and Limitations.
    Alsoof D; McDonald CL; Kuris EO; Daniels AH
    J Bone Joint Surg Am; 2022 Sep; 104(17):1586-1594. PubMed ID: 35383655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.